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Abstract ability, that an application is facing a node or link failure is
alsoincreasing. While on earlier massively parallel process-
With increasing numbers of processors on todays ma-ing systems (MPPs), a crashing node often was identical to a
chines, the probability for node or link failures is also in- system crash, current systems are more robust. Usually, the
creasing. Therefore, application level fault-tolerance is be- application running on this node has to abort, however, the
coming more of an important issue for both end-users and system in general is not effected by a processor failure. In
the institutions running the machines. This paper presentsGrid environments, a system may additionally become un-
the semantics of a fault tolerant version of the Message available for a certain time due to network problems, lead-
Passing Interface, the de-facto standard for communication ing to a similar problem from the application point of view
in scientific applications, which gives applications the pos- like a crashing node on a single system.

sibility to recover from a node or link error and continue ex- The Message Passing Interface (MPI) [16, 17] is the de-
ecution in a well defined way. The architecture of FT-MPI, facto standard for the communication in scientific applica-
an implementation of MPI using the semantics presentedtions. However, MPI in its current specification gives the
above as well as benchmark results with various applica- yser no possibility to handle the situation mentioned above,
tions are presented. An example of a fault-tolerant parallel \where one or more processors are becoming unavailable
equation solver, performance results as well as the time fOTduring runtime. Currently, MPI gives the user the choice
recovering from a process failure are furthermore detailed. petween two possibilities of how to handle a failure. The

first possibility is the default mode, which is to immedi-

ately abort the application. The second possibility is to

hand the control back to the user application (if possible)
1 Introduction without guaranteeing, that any further communication can
occur. The latter mode mainly has the purpose of giving the
application the possibility to close all files properly, write

Application developers and end-users of high perfor- b based checkpoint etc.. bef i
mance computing systems have today access to larger man aybe a Per-process based checkpoint €tc., betore exiting

chines and more processors than ever before. Systems suctﬁIe application.
as the Earth Simulator [1], the ASCI-Q machines [2] oreven  This situation is however unsatisfactory. Not only are
more extremely the IBM Blue Gene machine [3] consist of large numbers of CPU hours wasted and lost, but also in the
thousands of processors. Additionally, not only the indi- case of very long running or security relevant applications
vidual machines are getting bigger, but with the recently this might not be an option at all. The importance of this
increased network capacities, users have access to highd¥roblem can also be seen by the numerous efforts in this
number of machines and computing resources. Concur-area, e.g. FT-MPI [9], MPI/FT [5], MPI-FT [15], MPICH-
rently using several computing resources, often referred toV [7], LA-MPI [13].
as Grid- or Metacomputing, further increases the number In this paper we would like to present the concept and
of processors used in each single job as well as the overalthe current status of FT-MPI, a fault-tolerant version of MPI
number of jobs, which a user can launch. developed at the University of Tennessee, Knoxville. Fur-
With increasing number of processors however, the prob-thermore, we would like to give a detailed presentation of



how to write a fault tolerant applications, using a master- central co-ordinator and/or replicating MPI processes. Us-
slave approach as well as a parallel equation solver as exing these techniques, the library can detect erroneous mes-
amples. The structure of the paper is as follows. In sec-sages by introducing a voting algorithm among the replicas
tion 2 we present the semantics, concept and architectureand can survive process-failures. The drawback however is
of FT-MPI. Section 3 focuses on the performance compari- increased resource requirements and partially performance
son of FT-MPI with other MPI libraries for point-to-point  degradation.

benchmarks, while section 4 does a similar performance The project closest to FT-MPI known to the author is
comparison using the Parallel Spectral Transform Shallowthe Implicit Fault Tolerance MPI project MPI-FT [15] by
Water Model (PSTSWM) benchmarks. In section 5 we de- Paraskevas Evripidou of Cyprus University. This project
scribe various techniques for developing fault tolerant appli- supports several master-slave models where all communi-
cations. Furthermore, the concept of a fault tolerant equa-cators are built from grids that contain 'spare’ processes.
tion solver as well as execution and recovery times for vari- These spare processes are utilized when there is a failure. To
ous problem sizes are shown. Section 6 finally presents theavoid loss of message data between the master and slaves,
current status of FT-MPI as well as the ongoing work in this all messages are copied to an observer process, which can

area. reproduce lost messages in the event of any failures. This
system appears only to support SPMD style computation

1.1 Related Work and has a high overhead for every message and considerable
memory needs for the observer process for long running ap-

. . .. plications.
The methods supported by various project can be split FT-MPI has much lower overheads compared to the

into two classes: those supporting check-point/roll-back - .
. . g . above check-pointing and message replication systems, and
technologies, and those using replication techniques. The

first method attempted to make MPI applications fault tol- Lhouv‘:'er;rl]:rcnar\]/'giizggteunéfclgfrf;rganﬂié;:—:fiiigenlf_?f&g?
erant was through the use of check-pointing and roll back. has to be designed toqtake ad\./anta pepof its fault tolgerant fea-
Co-Check MPI [18] from the Technical University of Mu- gn intag .

. . ; . ; . tures as shown in the next section, although this extra work
nich being the first MPI implementation built that used the - . L

. - : : can be trivial depending on the structure of the application.

Condor library for check-pointing an entire MPI applica- o .

. _— If an application needs a high level of fault tolerance where
tion. Another system that also uses check-pointing but atnode loss would equal data loss then the application has to
a much lower level is StarFish MPI [4]. Unlike Co-Check q PP

MPI, Starfish MPI uses its own distributed system to pro- be'd¢5|gned to perform some level of user dwectgd gheck-
vide built in check-pointing. pointing. FT-MPI does allow for atomic communications

MPICH-V [7] from Universite’e de Paris Sud, France is much like Starfish, but unlike Starfish, the level of correct-

: . o L ness can be varied on for individual communicators. This
a mix of uncoordinated check-pointing and distributed mes-

sage logging. The message logging is pessimistic thus the)frowdes users the ability to fine tune for coherency or per-

: ormance as system and application conditions dictate. An
guarantee that a consistent state can be reached fromany lo- ... .

; . additional advantage of FT-MPI over many systems is that
cal set of process checkpoints at the cost of increased mes-

sage logging. MPICH- V uses multiple message Storagecheck-pomtlng can be performed at the user level and the

(observers) known as Channel Memories (CM) to provide elntire application does not need to be stqpped and resched-
. AR ed as with most process level check-pointing systems.

message logging. Process level check-pointing is handled”

by multiple servers known as Checkpoint Servers (CS). The

distributed nature of the check pointing and message log-2 Harness and FT-MPI

ging allows the system to scale, depending on the number

of spare nodes available to act as CM and CS servers. This section presents the extended semantics used by
LA-MPI [13] is a fault-tolerant version of MPI from the ~ FT-MPI, the architecture of the library as well as some de-

Los Alamos National Laboratory. Its main target is not to tails of the implementation. Furthermore, we present tools

handle process failures, but to provide reliable message dewhich are supporting the application developer while using

livery between processes in presence of bus, networkingFT-MPI are also presented.

cards and wire-transmission errors. To achieve this goal,

the communication layer is split into two parts, a Memory 2.1 FT-MPI Semantics

and Message Management Layer, and a Send and Receive

Layer. The first one is responsible for resubmitting lost  Current semantics of MPI indicate that a failure of a MPI

packets or choosing a different route, in case the Send angrocess or communication causes all communicators asso-

Receive Layer reports an error. ciated with them to become invalid. As the standard pro-
MPI/FT [5] provides fault-tolerance by introducing a vides no method to reinstate them, we are left with the prob-



lem that this causes METOMM_WORLD itself to become e ABORT: Is a mode which affects the application im-

invalid and thus the entire MPI application will grid to a mediately an error is detected and forces a graceful
halt. abort. The user is unable to trap this. If the application

FT-MPI extends the MPI communicator states from need to avoid this they must set all communicators to
valid, invalid to a range FIOK, FT_.DETECTED, one of the above communicator modes.

FT_.RECOVER, FTIRECOVERED, FTFAILED. In
essence this becomes OK, PROBLEM, FAILED, with the =~ Communications within the communicator are con-
other states mainly of interest to the internal fault recovery trolled by a message mode for the communicator which can
algorithm of FT-MPI. Processes also have typical statesPe either of:
of OK, FAILED which FT-MPI replaces with OK, Un-
available, Joining, Failed. The Unavailable state includes
unknown, unreachable or "we have not voted to remove it
yet” states. A communicator changes its state when either
an MPI process changes its state, or a communication
within that communicator fails for some reason.

On detecting a failure within a communicator, that com- 2. CONT: All communication that is NOT to the af-

1. NOP: No operations on error. l.e. no user level mes-
sage operations are allowed and all simply return an
error code. This is used to allow an application to re-
turn from any point in the code to a state where it can
take appropriate action as soon as possible.

municator is marked as having a probable error. Immedi-  fected/failed node can continue as normal. Attempts
ately as this occurs the underlying system sends a state up-  to communicate with a failed node will return errors
date to all other processes involved in that communicator. until the communicator state is reset.

If the error was a communication error, not all communica-

tors are fprced to be ypdated, i.f itwas a process exitthenall, , ,, Point to Point versus Collective correctness
communicators that include this process are changed. How

the system behaves depends on the communicator failuréAlthough collective operations pertain to point to point op-
mode chosen by the application. The mode has two partserations in most cases, extra care has been taken in imple-
one for the communication behavior and one for the how menting the collective operations so that if an error occurs
the communicator is rebuilt. during an operation, the result of the operation will still be
the same as if there had been no error, or else the operation
is aborted.

Broadcast, gather and all gather demonstrate this per-
Once a communicator has an error state it can onlyfectly. In Broadcast even if there is a failure of a receiv-
recover by rebuilding it, using a modified version of ing node, the receiving nodes still receive the same data, i.e.
MPI_Commdup. Using this function the new communi- the same end result for the surviving nodes. Gather and all-
cator will follow the following semantics depending on its gather are different in that the result depends on if the prob-
failure mode: lematic nodes sent data to the gatherer/root or not. In the

case of gather, the root might or might not have gaps in the

e SHRINK: The communicator is reduced so that the result. For the all2all operation, which typically uses a ring

data structure is contiguous. The ranks of the pro- algorithm it is possible that some nodes may have complete
cesses are changed, forcing the application to recallinformation and others incomplete. Thus for operations that
MPI_COMM _RANK. require multiple node input as in gather/reduce type opera-

tions any failure causes all nodes to return an error code,

e BLANK: This is the same as SHRINK, except that ather than possibly invalid data. Currently an addition flag

the communicator can now contain gaps to be filled in controls how strict the above rule is enforced by utilizing an

later. Communicating with a gap will cause an invalid extra barrier call at the end of the collective call if required.
rank error. Note also that calling MEZOMM_SIZE

will return the extent of the communicator, not the
number of valid processes within it.

2.1.1 Communicator and communication handling

2.1.3 Application view

The library provides the application a possibility to recover
 REBUILD: Most complex mode that forces the cre- from an error, restructure itself and continue with the execu-
ation of new processes to fill any gaps until the size is tion. However, the application has to take some steps itself

the same as the extent. The new processes can eitheg handle an error properly. Two possibilities are offered by
be places in to the empty ranks, or the communicator FT-MPI:

can be shrank and the remaining processes filled at the
end. This is used for applications that require a certain e The user discovers any errors from the return code
size to execute as in power of two FFT solvers. of any MPI call, with a new fault indicated by



MPI_ERR.OTHER. Details as to the nature and to recovery cycle. The HLIB layer interacts with HAR-
specifics of an error are available though the cachedNESS system during both startup, fault to recovery cycle,
attributes interface in MPI. and shutdown phases of execution. The HLIB also provides
) the interfaces to the dynamic process management and redi-
e The user can register a new error-handler at the be-oion of application 10. The SNIPE [10] library provides
ginning of the simulation, which is than called by the ¢ inter-node communication of MPI message headers and
MEI-hbrary in case an error occurs. Using this mech- data. To simplify the design of the FTRTL, SNIPE only de-
anism, the user hardly needs to change any code. | ers whole messages atomically to the upper layers. Dur-
The error-recovery function of the application has to per- ing a recovery from fa||ure_, S.NIPE uses in channel system
flow control messages to indicate the current state of mes-

form two phases: first, all non-local information needs to be ) : : .
reestablished (e.g. all communicators derived from another>29¢€ handling (such as accepting connections, flushing mes-

communicator, which has an erroneous processes needs tgRges or in-recovery).
be re-created). Second, the application needs to resume
from a well defined state in the application.

2.2 Architecture of FT-MPI and HARNESS User Application

FT-MPI was built from the ground up as an independent MPI Library Layer

MPI implementation as part of the Department of Energy
Heterogeneous Adaptable Reconfigurable Networked SyS-
tems (HARNESS) project [6]. One of the aims of HAR-
NESS was to provide a framework for distributed comput-

Derived Types

Buffer Mgmnt. nonblocking queu

FT-MPI runtime library

Message & J

ing much like PVM [12] previously. A major difference be- MPI messages
HLIB SNIPE | ™ ® -

ture verses the latter’s dynamic plug-in modularity. To pro- \ N

vide users of HARNESS instant application support, both + \\'\"'\;

a PVM and a MPI plug-in were envisaged. As the HAR-
NESS system itself was both dynamic and fault tolerant (no
single points of failure), then it became possible to build a

tween PVM and HARNESS is the formers monolithic struc- [

e o[ Notifir ]

Spawn—Notify

MPI plug-in with added capabilities such as dynamic pro-
cess management and fault tolerance.

Figure 1 illustrates the overall structure of a user level
application running under the FT-MPI plug-in, and HAR-

L_Startup service |
HCORE __|=——*[ Name service |
I:I Daemon

—» HLIB calls

- » Failure events

[ ] Plug—in . :
NESS system. The following subsections briefly outline - - Failure detection

the design of FT-MPI and its interaction with various HAR-
NESS system components.

2.3 FT-MPI architecture

As shown in figure 1 the FT-MPI system itself is built
in a layering fashion. The upper most layer deals with
the handling of the MPI-1.2 specification APl and MPI ob-
jects. The next layer deals with data conversion/marshaling
(if needed), attribute and record storage, and various lists. It is important to note that the FTRTL shown in figure
Details of the highly tuned buffer management and derived 1 can receive notification of failures from both the point to
data type handling can be found in [9]. FT-MPI also im- point communications libraries as well as from the HAR-
plements a number of tuned MPI collective routines, which NESS layer. In the case of communication errors, the notify
are further discussed in [19]. The lowest layer consists of is usually started by the communication library detecting a
the FT-MPI runtime library (FTRTL), which is responsible point to point message not being delivered to a failed party
for interacting with the OS via the HARNESS user level li- rather than the failed parties OS layer detecting the failure.
braries (HLIB). The FTRTL layer provides the facilities that The FTRTL is responsible for notifying all tasks of errors as
allow for dynamic process management, system level nam-they occur by injecting notify messages into the send mes-
ing of MPI tasks, message handling during the entire fault sage queues ahead of user level messages.

Figure 1. Architecture of HARNESS and FT-
MPI



2.3.1 OS support and the HARNESS GHCORE loses the benefits of any other available HARNESS plug-

. ins, but is better suited for clusters that only execute MPI
The General HARNESS ('T’ORE .(BC.ORE) is a dae- jobs. No matter which configuration is used, one name-
e o 7 2oL i, Seio dasmn, pls ne inr of e GHCORE dacron
G_HCORE are exploited via remote procedure calls (RPCS) or one startup daemon per node is heeded for execution.
as provided by the user level library (HLIB). The core pro- )
vides a number of very simple services that can be dynami-2-4 FT-MPI system level recovery algorithm and
cally added to [1]. The simplest service is the ability to load costs
additional code in the form of a dynamic library (shared ob-
ject) known as a plug-in, and make this available to eithera  The recovery method employed by FT-MPI is based on
remote process or directly to the core itself. Once the codethe construction of a consistent global state at a dynami-
is loaded it can be invoked using a number of different tech- cally allocatedleadernode. The global state is the bases
niques such as: for the MPLCOMM_WORLD communicator membership
) ) ) ) from which all other communicators are derived. After the
e Directinvocation: the core calls the code as a function, ga1e is constructed at this node it is distributed to all other

or a program uses the core as a runtime library to 10ad 5 4es peons via an atomic broadcast operation based on a
the function, which it then calls directly itself. multi-phase commit algorithm.

e Indirect invocation: the core loads the function and ~ The recovery is designed to handle multiple recursive er-
then handles requests to the function on behalf of the rors, including the failure of the leader node responsible for

calling program, or, it sets the function up as a separateconstructing the global state. Under this conditioreérc-
service and advertises how to access the function.  tion state is entered where every node votes for themselves,

and the first voter wins the election via an atomic swap op-
An application built for HARNESS might not interact eration on a leader record held by the HARNESS name ser-
with the host OS directly, but could instead install plug-ins vice. Any other faults causes the leader node to restart the
that provide the required functionality. The handling of dif- construction of the global state from the beginning. This
ferent OS capabilities would then be left to the plug-in de- process continues until the state is either completely lost

velopers, as is the case with FT-MPI. (when all nodes already holding the previous verified state
fail) or when everyone agrees with the atomic broadcast of

2.3.2 GHCORE services for FT-MPI the pending global state.
The cost of performing a system level recovery is as fol-

Services required by FT-MPI break down into two main cat-
egories:

lows:

e synchronizing state and detecting faults. O(2N) mes-

e Spawn and Notify service. This service is provided by sages

a plug-in which allows remote processes to be initiated
and then monitored. The service notifies other inter-
ested processes when a failure or exit of the invoked
process occurs. The notify message is either sent di-
rectly to all other MPI tasks or via the FT-MPI Notifier
daemon which can provide additional diagnostic infor-
mation if required.

e respawning failed nodes and rechecking state and
faults. O(2N) messages.

e broadcasting the new pending global state, verifying
reception. O(3N) messages.

o Naming services. These allocate unique identifiers in ¢ broadcasting the acceptance of global state. O(N) mes-
the distributed environment for tasks, daemons and sages.
services (which are uniquely addressable). The name
service also provides temporary state storage for use 1he total cost of recovery from detection to acceptance
during MPI application startup and recovery, via a Of @ new global state is O(8N) messages. The results de-
comprehensive record facility. tailed later in section 5.2 currently use a linear topology
for these messages leading to O(8N) cost, which is not
Currently FT-MPI can be executed in one of two modes. acceptable for larger systems. Currently under test is a
As the plug-in mode described above when executing asmixed fault tolerant tree and ring topology which together
part of a HARNESS distributed virtual machine, or in a with the combining of several fault detection and broad-
slightly lighter weight configuration with the spawn-notify cast stages will reduce the recovery cost to approximately
service as a standalone daemon. This latter configurationO(3N)+O(3logN).



3 Point-to-point benchmark results

In this section we would like to compare the point-to-

result with all current state-of-the-art MPI libraries for reg-
ular applications. Therefore, we evaluate in this section the
performance of FT-MPI using the Parallel Spectral Trans-

point performance of FT-MPI to the performance achieved form Shallow Water Model (PSTSWM) [20] benchmark,

with the most widely used, non fault-tolerant MPI imple-

and compare the results achieved to the results with MPICH

mentations. These are MPICH [14] using version 1.2.5 as1.2.5 and MPICH 2. LAM 7 is in contrary to the previ-

well as the new beta-release of version 2, and LAM [8] ver-
sion 7. All tests were performed on a PC-cluster consisting
of 16 nodes, each having two 2.4 GHz Pentium IV proces-
sors. A Gigabit Ethernet network connects the nodes.

For determining the communication latency and the

achievable bandwidth, we used the latency test suite [11].

The zero-byte latency measured in this test revealed LAM7

ous section not included in this evaluation, since PSTSWM
makes use of some optional Fortran MPI-Datatypes, which
are not supported by LAM 7.

Included in the distribution of PSTSWM version 6.7.2
are several test-cases and test data. Presenting the results
achieved with all of these test-cases would exceed the scope
and the length of this paper, therefore we have picked three

to have the best short-message performance, achieving a ld€st-cases, which we found representative from the problem

tency of 41.2us, followed by MPICH 2 with 43.6:s. FT-
MPI had in this test a latency of 44u5, while MPICH 1.2.5
followed with 45.5us.

Figure 2 shows the achieved bandwidth with all commu-
nication libraries for large messages. FT-MPI achieves in
this test the best bandwidth with a maximum of 66.5 MBJ/s.
LAM7 and MPICH 2 have comparable results with 65.5
MB/s and 64.6 MB/s respectively. The bandwidth achieved
with MPICH 1.2.5 is slightly worse, having a maximum of
59.6 MB/s.
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Figure 2. Achieved bandwidth with FT-MPI,
LAM 7, MPICH 1.2.5 and MPICH 2

4 Performance results with the Shallow Wa-
ter Code benchmark

While FT-MPI extends the syntax of the MPI specifi-
cation, we expect that many of the end-users will use FT-
MPI in the conventional, non fault-tolerant way. There-
fore, it is important, that FT-MPI achieves a comparable

size and performance behavior. All tests were executed with
4 processes using 4 nodes on the same PC-cluster described
in the previous section.

Problem | FT-MPI | MPICH 1.2.5| MPICH 2

t42.117.240| 93.6 sec| 104.3 sec 93.9 sec
t85.117.24 | 84.6 sec 96.2 sec 84.5 sec
t170.13.12 | 63.7 sec 70.1 sec 64.0 sec

Table 1. Execution time of various problems
with FT-MPI, MPICH 1.2.5 and MPICH 2

Table 1 presents the results achieved for these three test-
cases. Generally speaking, FT-MPI and MPICH 2 are usu-
ally equally fast, although in most test cases, FT-MPI was
slightly faster then MPICH 2. MPICH 1.2.5 is significantly
slower than the other two MPI libraries for these test-cases.
These results indicate, that FT-MPI is achieving top-end
performance for non fault-tolerant applications and is there-
fore a real alternative to the other libraries.

5 Examples of fault tolerant applications

Hand in hand with the development of FT-MPI, we also
developed some example applications showing the usage
of the fault-tolerant features of the library. In this section,
we would like to present the relevant parts of fault-tolerant
master-slave applications as well as a fault-tolerant version
of a parallel equation solver. In both cases, we assume, that
the communicator mode used is REBUILD, which means
that faulty processes are re-spawned by FT-MPI.

5.1 Aframework for a fault-tolerant master-slave
application

For many applications using a master-slave approach,
fault tolerance can be achieved easily, by adding a simple



state model in the master process. The basic idea is, thathe receiving process died, and second another process has
when a worker process dies, the master redistributes theailed. In both cases, all MPI operations called after the
work currently assigned to this process. The state modelnotification of the death-event of a process will return the
as applied in our example, is shown in figure 3. error code MPIERR OTHER. In the first case, the process
is either marked as DEAD for the BLANK and SHRINK
communicator mode, or respawned and marked as AVAIL-

AVAILABLE ;___‘\\ . ABLE for the REBUILD mode. In the second case, the
= N Send operation has to be repeated, and therefore the state of
send msg. NN this process is re-set to its previous value. The situation is
\ similar if an error occurs on the receive operation.
WORKING 1 error L iil;]LDE_D As mentioned in section 2.1.3, there are two methods,
ok Q ! how the application can detect an error: either the return
recv. mesg. ‘\ ! code of every MPI function is checked, or the application
‘( registers right after MPInit an error-handler to his working
RECEIVED /' RECV- . )
'\ FAILED communicator. The following extract of the source code
error Q'. of the master shows the most relevant peaces of the major
! | working loop, including the registration of the error-handler
completed ! ;' as well as usage of the different state’s for each process.
FINISHED Vi DEAD The transition state diagram is implemented in the routine

advance_state

- - = = = = Blank/Shrink: failed process marked dead
— — —= Rebuild: failed process respawned, state re—set [* Register error handler */
if ( master ) {
MPI_Errhandler_create(recover,&errh);
Figure 3. Transition-state diagram of the fault- MPI_Errhandler_set ( comm, errh);
tolerant master-slave code }

o ) /* major master work loop */
The master maintains for every process its current state 4 {

This can be one of the following states: /* Distribute work */

for ( proc=1; proc<maxproc; proc++)
if ( state[proc] == AVAILABLE )
MPI_Send(workid[proc],....);
e WORKING: process is alive and work has been as- advance_state(proc);
signed to him }

e AVAILABLE: process is alive and no work has been
assigned to him

e RECEIVED: process is alive and the result of its work

for ( proc=1: proc<maxproc; proc++
has been received (p p p P X

[* Collect results */

e FINISHED: process is alive and it has been notified if ( state[proc] == WORKING }{

that no more work will be sent to him MPI_Recv(workid[proc], ....);
advance_state(proc);

e SEND FAILED: send operation to this process failed }

e RECV FAILED: the recv operation to this process /* Perform global calculation */

failed if ( state[proc] == RECEIVED ) {

e DEAD: this process is marked as dead. workperformed += workid[proc];
advance_state(proc);
Under regular conditions, the state of each process is

changing from AVAILABLE to WORKING to RECEIVED

and back to AVAILABLE. In case an error occurs when dis-

tributing the work to the slaves, the state of the receiver-} \hile (all work is done);

process is changed to SEND FAILED. The Send operation

to this process could have failed due to two reasons: first, The recovery algorithm invoked in case an error occurs,



consists of the following steps: equation solver (PCG) in a fault tolerant manner. The par-
) o i allel application has been extended by two major points:
1. Re-instantiation of MPCOMM_WORLD by calling
MPI_Comm.dup. e A process has been dedicated in the application to
serve as an in-memory checkpoint server. Every
200 iterations, all processes calculate using several
MPI_Reduce operations a checkpoint of each relevant

3. Set the state of the failed processes to DEAD for the ~ Vvector, which is than stored on the dedicated check-

BLANK and SHRINK mode, respectively to AVAIL- point processes.
ABLE for the REBUILD mode.

2. Determining how many processes have died and who
has died.

e In case one of the processes dies, the data of the re-

4. Set the state of the process, which was the commu- spawned process is recalculated using the local data on
nication partner in the Send or Recv operation when all other processes and the checkpointed vector. The
the error was detected to SENEAILED respectively matrix is not checkpointed in this application, since
RECV_FAILED. it is constant and not changing. Therefore, the re-

spawned processes rereads the matrix from the original

5. Mark the piece of work, which was currently assigned input file.
to the failed processes as 'not done’, thus it will be re-
distributed. The recovery algorithm makes use of tlagjmp func-

o o tion of the C-standard. In case an MPI function returns

The second point in the list is closely related to the y\ip| ERR OTHER indicating that an error has occurred, all

problem, how a process can determine, whether it hasy gcessegump to the recovery section in the code, perform
been part of the initial set of processes or whether it {e necessary recovery operations and continue the compu-

is a re-spawned processes. FT-MPI offers the user tWoiation from the last consistent state of the application. The

possibilities to solve this issue: the first method is the (gleyant section with respect to the recovery algorithm is
fast solution, involves however proprietary FT-MPI con- ghown in the source code below.

stants and attributes. In case a processes is a replace-

ment for a failed process, the return value of MRt will /* Mark entry point for recovery */

be set to MPIINIT _RESTARTEDPROCS. All processes | = setjmp ( env ):

which have not failed will have two additional MPI at-

tributes set: the value of FTMENUMFAILED _PROCS in- /* Execute recovery if necessary */

dicates, how many processes have failed, while the value ofis ( state == RECOVER) {

FTMPILLERRFAILED is an error-code, whose error-string MPI_Comm_dup ( comm, &newcomm );

contains the list of processes which have failed since the last ~ comm = newcomm:

error. This method is considered to be fast, since itdoes not

involve any additional communication to determine these  x 4o other operations */

values. recover_data ( my_vector,.., &num_iter );
The second possibility is, that the application introduces

a static variable. By comparing the value of this variable to  j« (eset state-variable */

the value on the other processes, the application can detect, sigte = OK:

whether everybody has been newly started (in which case

all processes will have the pre-initialized value), or whether

a subset of processes have a different value, since each pro-

cesses modifies the value of this variable after the initial /» major calculation loop */

check. This second approach is somewhat more complexq {

however, it is however completely portable and can also be

used with any other non fault-tolerant MPI library.

rc = MPI_Send ( ...)

5.2 A parallel, fault-tolerant CG-solver if ( rc == MPI_ERR_OTHER ) {
state = RECOVER,;
In this section we would like to give an example, of how longjmp ( env, state );
fault tolerance can be achieved for a tightly coupled appli- }

cation, which is not using the master-slave paradigm. As
an example, we implemented a parallel conjugate gradient} while ( norm < errtol );



The code is written such, that any symmetric, positive is an implementation of this specification, supporting the
definite matrix using the Boeing/Harwell format can be full MPI-1.2 document as well as supporting extended func-
used for simulations. Table 2 gives some results of exe-tionality of a failure-recovery model. FT-MPI is however
cution times for solving a system of linear equations using not an automatic checkpoint/recovery system, but it gives
the fault tolerant version of the solver. The first column is the application the possibility to survive node or link fail-
indicating the problem size by giving the number of non- ures, re-organize its communication and/or communicators
zero entries in the matrix, the second column the number ofand continue from a well defined point in the users appli-
processes used for the calculation (with the checkpoint pro-cation. Defining and implementing a consistent state in the
cess also shown as an addition) The third column containsapplication is however the responsibility of the end-users
the execution time required to achieve a solution with the and application developers.
required precision. Finally, the fourth column is showing Results with point-to-point benchmarks as well as with
the recovery time in both seconds and as a ratio of overallthe PSTSWM benchmark show, that the performance
execution time in case of a computational processes dies. achieved with FT-MPI is comparable to other, non fault-

tolerant implementations of MPI, in some cases even better.
Thus, the overhead due to the fault-tolerant features of the

Problem | No. of | Exec. time| Recovery time/ratio libraries are small, and make FT-MPI an appealing alterna-
size procs. [sec] [sec]/[%] tive.
4,054 4+1 5 1.32/26.4 Writing fault tolerant applications requires usually some
428,650 | 8+1 189 3.34/1.76 modifications to existing parallel applications. A state
2,677,324| 16+1 1162 11.37/0.97 model for the development of master-slave applications has

been presented as well as an example for a tightly cou-
pled application, namely a parallel CG-solver. The usage of
error-handlers from the MPI specification greatly improves
the readability and maintainability of fault tolerant applica-
tions.

Current work focuses on improving the times for recov-
ering from an error. While for long-running applications

As table 2 indicates, recovering from an exit-event of a eyen the current times are just a marginal fraction of their
process takes between 1.3 seconds for 4 processes to 11.3ferall execution time, we still think that there is ample
seconds for 16 processes. The recovery time itself can b&oom for further improvements in this area. More work
split again into two major parts: the first part is the time || also be invested in the development of other templates
spent in a multi-phase commit protocol between the pro- to show, how the fault-tolerant features of FT-MPI can be

cesses, since FT-MPI is capable of recovering from addi-ysed by other classes of high performance computing appli-
tional death events recursively during the recovery phase.cations.

For 16 processes, this time is in our application scenario
3.5 out of 11.37 seconds. The second part of the recovery
time consists of the recovery of the user-data within the ap—ACknOWIedgments

plication. While this time is negligible for small matrices

and problem sizes, it is the dominant part for the biggest ~This material is based upon work supported by the
test case their. The re-reading of the matrix over NFS atDepartment of Energy under Contract No. DE-FGO02-
the respawned process takes up to 7.5 seconds. Neverthé®2ER25536.

less, for large problem sizes, the overall recovery time from

a process failure is less than one percent of the total execuReferences
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