
Increasing Temporal Locality with
Skewing and Recursive Blocking

Guohua Jin
Dept. of Computer Science

Rice University
Houston, TX

jin@cs.rice.edu

John Mellor-Crummey
Dept. of Computer Science

Rice University
Houston, TX

johnmc@cs.rice.edu

Robert Fowler
Dept. of Computer Science

Rice University
Houston, TX

rjf@cs.rice.edu

ABSTRACT
We present a strategy, called recursive prismatic time skew-
ing, that increase temporal reuse at all memory hierarchy
levels, thus improving the performance of scientific codes
that use iterative methods. Prismatic time skewing par-
titions iteration space of multiple loops into skewed prisms
with both spatial and temporal (or convergence) dimensions.
Novel aspects of this work include: multi-dimensional loop
skewing; handling carried data dependences in the skewed
loops without additional storage; bi-directional skewing to
accommodate periodic boundary conditions; and an analysis
and transformation strategy that works inter-procedurally.
We combine prismatic skewing with a recursive blocking
strategy to boost reuse at all levels in a memory hierarchy. A
preliminary evaluation of these techniques shows significant
performance improvements compared both to original codes
and to methods described previously in the literature. With
an inter-procedural application of our techniques, we were
able to reduce total primary cache misses of a large applica-
tion code by 27% and secondary cache misses by 119%.

1. INTRODUCTION
For a program to achieve high performance on modern com-
puter systems with multi-level memory hierarchies, it must
exhibit effective data reuse at each level. Good spatial local-
ity of memory accesses means that most or all data fetched
into cache will be used. It is well known that careful data
layout can improve spatial locality and mitigate interference.
However, on systems with limited memory bandwidth, good
spatial locality alone is not enough for high performance.

To achieve high performance on recent systems with typical
memory hierarchies, programs must also exhibit substantial
temporal locality. That is, on average, each data item will
be accessed many times in cache before being evicted.

Tiling loops over a program’s data domain is a strategy com-

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage, and that copies bear this
notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SC2001 November 2001, Denver (c) 2001 ACM 1-58113-
293-X/01/0011 $5.00

monly used to increase both spatial and temporal reuse in
one or more levels of cache [8, 10, 13, 15, 16]. Tiling reshapes
an iteration space1 over a data domain by partitioning it into
pieces that fit comfortably into cache and then completing
all computations on each piece before moving to the next.
Tiling rearranges the order of computation so that multiple
references to a data element occur in inner loops while that
element is still resident in cache. Recursive blocking [5, 11,
17, 23] generalizes multi-level tiling by recursively partition-
ing a computation’s iteration space, thus providing locality
at each level of the recursion. This strategy is attractive be-
cause it can achieve good performance across a wide range
of systems, independent of specific memory hierarchy imple-
mentations.

However, even if tiling and recursively blocking are success-
ful at extracting maximal data reuse within each iteration,
that is in the loops over the data domain (spatial loops or
spatial loop nest), this is often not sufficient to reduce the
program’s memory bandwidth requirements enough to at-
tain acceptable performance. For example, if four data el-
ements fit in a cache line and each element is reused five
times in the spatial loop nest, the best possible cache miss
rate is still five percent for this data. Further increasing the
number of references per miss requires either a change of
algorithm or exploiting additional data reuses outside the
spatial loop nest.

In this paper, we focus on techniques that improve temporal
locality in scientific applications that iterate over a regular
discretized domain. This type of computation is commonly
used for solving partial differential equations and in image
processing. The spatial problem domain is discretized by
mapping it onto a one, two, or three dimensional array (or
arrays). These arrays exceed the size of caches at all levels
for large-scale applications. The core computation consists
of repeated updates over the spatial domain to each data
element based on its current value and the values of some of
its neighbors. Around the spatial loops are one or more outer
loops that represent time steps in discrete time simulations
or convergence steps for indirect solution methods2. Instead
of allocating data for each time or convergence step, these

1Iteration space is the set of all possible iterations for a loop
or nested loops
2For simplicity, we use the term “time step” to refer to each
iteration of such loops, and the term “time step loop” to
refer to the loop of time steps.

do t = 1, Ut

do i1 = Li1 , Ui1

. . .
do im = Lim , Uim

LOOP BODY 1

do j1 = Lj1 , Uj1

. . .
do jn = Ljn , Ujn

LOOP BODY 2

Figure 1: A skeletal program fragment for an itera-
tive stencil computation.

loops typically reuse the memory locations used by their
predecessors. Thus, these are guaranteed to carry many
data dependences and their index variables are not used
in index expressions in the data domains. Figure 1 shows
the skeletal structure of a sample computation of this class
consisting of an outer time step loop that encloses two loop
nests that sweep over the data domain.

We present a new strategy, called Recursive Prismatic Time
Skewing (RPTS), which integrates recursive blocking with
time skewing to increase temporal reuse in iterative stencil
computations. First, we apply a skewing transformation
to an iterative stencil computation both to transform loop-
carried data dependences into a form that allows recursive
blocking and to create opportunities for exploiting temporal
reuse across time steps once the computation is blocked.
Then we apply recursive blocking to partition the iteration
space over the data domain into cache-sized tiles to enhance
reuse at all levels of a memory hierarchy.

RPTS has several novel features that distinguish it from
other published time skewing techniques. First, it integrates
recursive blocking and time skewing. Second, the skew-
ing transformation applies to multiple spatial dimensions.
Third, it handles data dependences carried on a “time” loop
without additional storage. Fourth, it uses bi-directional
skewing for handling periodic boundary conditions. Finally,
it is based on an inter-procedural analysis and transforma-
tion strategy, thus allowing time step and spatial loops to
be defined in different routines.

Experimental results show RPTS improves overall perfor-
mance by from 12% to 133% compared to alternative strate-
gies from the the literature. Speedups over the baseline ap-
plications compiled using standard techniques range from
243% to a factor of 15.

The remainder of the paper is organized as follows. First, we
describe background for our research including related work
and definitions. Second, we describe our recursive prismatic
time skewing transformation. Third, we present our experi-
mental validation of these techniques.

2. BACKGROUND
2.1 Related Work
Compiler techniques for improving memory hierarchy per-
formance have been widely studied. At the register level,
scalar replacement [9] can reduce the frequency of loads
and stores by enabling back-end compilers to allocate sub-

scripted variables to registers. Combined with loop fusion
or other transformations that reshape a program’s iteration
space by reordering statement instances to bring temporal
reuse of values within the same iteration or a few iterations
away (e.g. unroll-and-jam [7]), scalar replacement can dra-
matically reduce load/store traffic.

Tiling (also known as loop blocking) is one of the key trans-
formations used for improving temporal reuse in cache (e.g., [8,
10, 15, 14, 16]). Most research on tiling has focused on
improving reuse for a single level of cache and has been
only applied to perfectly-nested loops, in which an outer
loop encloses exactly one inner loop. To enhance locality in
imperfectly-nested loops, Ahmed, Mateev, and Pingali pro-
posed an approach by which iteration space of each state-
ment is embedded in a special space called product space
using affine embedding functions [3]. These embedding func-
tions effectively generalized transformations like loop fusion
and loop fission that has been used for locality enhancement
and can be used for tiling imperfectly-nested loops if the
product space can be transformed into a fully permutable
one [4].

Tiling can also be applied to multi-level memory hierarchies
by separately blocking for each level in the memory hier-
archy. Kodukula and Pingali [13] describe a data-centric
technique for performing multi-level tilings. A key difficulty
with multi-level tiling techniques is choosing the appropri-
ate tile sizes. The optimal tile size for a particular level of
the memory hierarchy depends on architectural parameters
such as cache size and associativity as well as code charac-
teristics such as stencil shape and the number of variables
being referenced. Such tilings are best performed by a com-
piler because having the wrong number of levels of tiling or
wrong tile sizes can lead to performance degradation when
the tilings are mismatched to the target architecture.

An alternative to multi-level tiling is to use recursive block-
ing [5, 11, 17]. By recursively partitioning the iteration
space to a base tile size guaranteed to be small enough for
all systems, this strategy can achieve good performance on
a multi-level memory hierarchy regardless of its character-
istics, because below some level of the recursion, the size of
the data referenced will fit in each level of cache and be avail-
able for temporal reuse. Yi, Adve and Kennedy [23] have
developed automatic techniques for automatically rewriting
loop nests whose data dependences meet certain conditions
into a recursive divide-and-conquer form.

For iterative computations, additional temporal reuse can be
achieved by interleaving multiple time steps of the compu-
tations so that values computed in one time step are reused
in the next before they are evicted. This class of techniques
has been explored by both Wonnacott [22], and Song and
Li [18, 19].

Wonnacott [22] describes time skewing, a technique that
combines blocking in both the data and time domains. A
time step loop is skewed with one spatial loop over a a data
tile so as to preserve data dependences across multiple time
steps. This technique involves transforming both the iter-
ation space and array indexing functions in a loop body.
Key requirements for this method are: (1) all data values

consumed in a loop nest must come from the previous it-
eration of the time step loop; (2) every statement within
the time step loop must be nested within the same number
of loops, and (3) the flow of values across iterations of the
time step loop must be identical for all time steps. The first
restriction is the most limiting: Wonnacott’s time skewing
strategy does not apply when data domain loops carry data
dependences.

Song and Li [18, 19] describe a similar technique that uses
a combination of loop skewing and tiling, combined with
limited array expansion. The goal of this method is to re-
duce memory traffic by improving temporal data reuse in
secondary cache. To achieve this goal, Song and Li choose
a blocking factor so that the data accessed by computation
over a tile will likely fit in secondary cache. Unlike Won-
nacott’s time skewing technique, Song and Li’s technique is
applicable to codes in which spatial loops may carry data
dependences.

Prismatic skewing differs from previous time-skewings in
three ways. First, prismatic skewing may skew multiple spa-
tial dimensions. Both Wonnacott [22] and Song & Li [19]
consider skewing only a single spatial dimension. Second,
prismatic skewing handles carried data dependences on spa-
tial dimensions without requiring additional storage. Won-
nacott considers only computations that have no carried de-
pendences on spatial dimensions. Song and Li handle car-
ried dependences on the temporal dimension by introducing
additional storage using odd-even duplication. Third, pris-
matic skewing handles periodic boundary conditions using
bi-directional skewing. No previous time-skewing work has
considered this issue.

In our program model, the time step loop and the spatial
loops are not necessary in the same routine. Loops can be
imperfectly nested. At each time step, there could be com-
putational sweeps along different directions, data copying,
and/or reductions across the data index domain represented
by the loop nests enclosed by the time step loop t. Data de-
pendences can be carried by the time step loop or the spatial
loops. Without loss of generality, we assume that all loops
have stride one.

Prismatic skewing and recursive blocking are also compati-
ble with techniques for enhancing temporal reuse in the reg-
isters (e.g., [9]) that can further reduce a program’s needs
for memory hierarchy bandwidth and improve performance.

2.2 Definitions
A dependence is called a true dependence if the source writes
a value that is read by the sink, an anti-dependence if the
source reads a variable that is written later by the sink , or
an output dependence if both the source and the sink write
the same variable. A dependence distance vector describes
the number of iterations crossed by the dependence for each
index of the common enclosing loops. A dependence is loop-
independent if its distance vector is all “0”. Otherwise it is
loop-carried and is said to be carried by an enclosing loop at
the level that corresponds to the first nonzero component in
the distance vector.

3. APPROACH

T = 1

T = 2

II

JJ

SS jj

T = UT

T = 3

.

...
...

SS ii

T = 1

TT

II

JJ

T = UT

Figure 2: 2D prismatic skewing.

RPTS derives its name from the fact that it skews an itera-
tion space that ranges over time and space and then blocked
recursively. The iteration space over the data domain is
thus carved into a set of nested, skewed time-space prisms
in which one or more spatial dimensions is skewed by the
index of a time-step loop. Loops over spatial dimensions
may also need to be skewed with respect to one another to
enable recursive blocking.

Figure 2 shows a rectangular solid time-space iteration vol-
ume and a prismatic tile within which each spatial dimension
has been skewed by the temporal dimension. All prismatic
tiles of the time-space iteration volume are skewed in the
same way. Along the boundaries prismatic tiles are clipped
to prevent them from extending outside the iteration space.

In the next subsection, we describe a skewing transforma-
tion that has two effects: it skews spatial loops over time
to enable reuse across time steps and it transforms data de-
pendences to enable recursive blocking. Following that, we
describe our recursive blocking transformation.

3.1 Skewing
The skewing transformation we use serves two purposes.
First, it skews spatial loops w.r.t. one another to enable
recursive blocking. Second, it skews spatial loops w.r.t. a
time step loop which, after blocking the iteration space, will
enable temporal reuse of cached values across multiple time
steps.

3.1.1 Computing Spatial Skew Factors
We consider two types of skewing for spatial loops. Skewing
an inner spatial loop i w.r.t. an enclosing spatial loop j
with a skew factor si,j involves adding si,j times the loop
index variable of j to the upper and lower bounds of i and
subtracting the same quantity from every use of the loop
index variable of i inside the loop as Wolfe described [20].
Skewing a spatial loop i w.r.t. another spatial loop j in a
sibling loop nest3 with skew factor ˆsi,j is applied by adding
ˆsi,j to the upper and lower bounds of i and subtracting the

same amount from each occurrence of the index variable of
i. We call skew factors of both types of skewing for spatial
loops spatial skew factors.

3Two loops or two loop nests are called sibling if they are
enclosed in a common outer loop

a) b)

JJ
II

Figure 3: Skewing a spatial loop to eliminate
interchange-preventing dependences.

For orthogonal recursive blocking of an iteration space4 to be
legal, the data dependences within the iteration space must
be in a form so that when any dimension of the iteration
space is partitioned into two halves, all true and anti- data
dependences flow from the first half into the second half
in lexicographical order. With this condition satisfied, the
partition containing the head of the dependences can be
executed in its entirety before the partition containing the
dependence tails. If the condition is not satisfied, no serial
ordering of the partitions will be possible.

To satisfy this condition, the distance vectors for all true
and anti- dependences must contain only non-negative dis-
tances for loops whose index variables appear in array sub-
scripts [20]. For perfect loop nests, this condition is equiva-
lent to there being no interchange-preventing dependences.
Figure 3a shows a pictorial representation of a pattern of
true and anti- dependences within an iteration space. Fig-
ure 3b shows a transformed iteration space in which the
interchange-preventing dependences are eliminated by skew-
ing. For imperfect loop nests, dependences between sibling
loop nests must also meet this criteria.

ComputeSpatialSkewFactors determines spatial skew fac-
tors based on dependences carried by the spatial loops and
loop-independent dependences between sibling spatial loop
nests enclosed in the time step loop. For each dependence

δ
′

carried by a spatial loop, (A(gsrc(�i))δ
′
A(gsink(�j))), where

gsrc and gsink are subscript expressions in the source and

sink references of the dependence, if disti(δ
′
) < 0, loop

i will be skewed w.r.t. the outermost loop j satisfying

distj(δ
′
) > 0. dist(δ

′
) is the dependence distance vector

of δ
′
. For each loop independent dependence between sib-

ling loop nests or dependence carried by a spatial loop δ,
A(fsrc(�i)) δ A(fsink(�j)), where fsrc and fsink are subscript
expressions of the two array references, we define dist(δ) as

f−1
sink(fsrc(�i)) - �i. If there exists k such that distk(δ) < 0,

and i and ī are corresponding loops in the sibling loop nests
enclosing fsrc and fsink, then loop ī needs to be skewed
w.r.t. loop i with a spatial skew factor ˆs̄

i,i
= −distk(δ).

ComputeSpatialSkewFactors(L, G, type)
L: set of loops to which prismatic skewing is applied;
G: dependence graph annotated with distance vectors.
type: 1 for skewing w.r.t. an enclosing loop or

2 for skewing w.r.t. a loop in a sibling loop nest

4We use the term orthogonal blocking to indicate that the
iteration space is partitioned by splitting the index space
along the (orthogonal) data dimensions.

TT

JJ

II

Figure 4: Prismatic skewing of a 2D domain shown
in 3D space.

carriedDep = dependences carried by a spatial loop in L;
indDep = loop-independent dependences between

sibling loop nest of spatial loops in L;
switch (type)
case 1:

for δ
′
(A(gsrc(�i)) δ

′
A(gsink(�j))) ∈ carriedDep

dist(δ
′
) is the distance vector of δ

′
in G;

if disti(δ
′
) < 0

j is the outermost loop satisfying distj(δ
′
) > 0;

si,j = max(si,j, �(1−disti(δ′))/distj(δ
′
)�) if si,j is

defined, si,j = �(1−disti(δ′))/distj(δ
′
)� otherwise;

case 2:
for δ (A(fsrc(�i)) δ A(fsink(�j))) ∈ indDepS carriedDep
dist(δ) = f−1

sink(fsrc(�i)) - �i;
if there exists k such that distk(δ) < 0, i and ī are
corresponding loops in sibling loop nests enclosing
fsrc and fsink

ˆs̄
i,i

= max(ˆs̄
i,i
,−distk(δ)) if ˆs̄

i,i
is defined,

ˆs̄
i,i

= −distk(δ) otherwise;

3.1.2 Computing Temporal Skew Factors
Skew factors for skewing of spatial loops w.r.t. a time step
loop t, called temporal skew factors, are determined based
on data dependences carried by t so that a skewed por-
tion of the domain iteration space at time step t can safely
execute after a portion of the iteration space finishes the
execution at time step t − 1. Temporal skew factors can
be represented by a vector �s with each component repre-
senting a skew factor of skewing a spatial loop and corre-
sponding spatial loops from its sibling loop nests w.r.t. the
time step loop. Figure 2 shows plane and 3D views of a 2D
skewing of a central prism with temporal skew factor vec-
tor �s = (si, sj). Suppose [lbi : ubi, lbj : ubj] is the spatial
cross section of the prism evaluated at time step t. At the
next time step t + 1, the spatial cross section executed is
[lbi − si : ubi − si, lbj − sj : ubj − sj]. This process con-
tinues until it reaches the face of the prism defined by the
upper time bound (ubt). Boundary prisms are skewed in
the same way except they are clipped by lower and upper
bounds of the spatial loops. Figure 4 shows a central prism
and eight different prism fragments that could be formed
along boundaries with prismatic skewing, assuming no peri-
odic boundary conditions in the spatial dimensions.

Naive skewing of spatial loops w.r.t. the time step loop can
violate data dependences originally preserved by the sequen-

Figure 5: 2D Morton curve.

tial order of time steps. Prismatic skewing preserves depen-
dences within a prism by incrementally traversing time steps
and walking through the original portion of each prism and
its skewed portions in the original lexicographical ordering
or some other legal ordering. With properly chosen skew
factor vector, prismatic skewing also preserves dependences
between prisms and carried by the time step loop.

For loops with periodic boundary conditions, true depen-
dences exist between iterations at their upper bounds and
those at the lower bounds. Execution of those boundary it-
erations must be delayed until the values they need are up-
dated. A reverse skewing in the boundary prisms is needed.
Reverse skewing with a temporal skew factor �rs clips the
boundary prisms along the dimension of loop i with Li +
rsi(t− lbt) and Ui + rsi(t− lbt), where Li and Ui are lower
and upper bounds of loop i, rsi is the component of �rs as-
sociated with loop i, and t and lbt are the current time step
and lower bound of the time step loop.

ComputeTemporalSkewFactors calculates temporal skew
factors for each of the spatial loops in L based on depen-
dences carried by the time step loop t. All temporal skew

factors are initially set to zero. For each dependence δ
′

car-

ried by t, A(fsrc(�i)) δ
′
A(fsink(�j)), where fsrc and fsink

are subscript expressions of the source and sink references
of the dependence, the temporal skew factor for spatial loop

l is updated by sl = max(sl,−distl(δ′)). dist(δ′) is defined

as f−1
sink(fsrc(�i)) - �i. If l has periodic boundary conditions,

the temporal skew factor for reverse skewing is calculated

rsl = max(rsl,min(distl(δ
′
), Ul−Ll +1−distl(δ′))), where

Ul and Ll are upper and lower bounds of loop l. For peri-
odic boundary conditions, we used code sinking [21] to move
boundary computations into corresponding spatial loops, if
they are originally peeled off the main loop body, by adding
proper conditions.

ComputeTemporalSkewFactors(L)
L: set of loops to which prismatic skewing is applied;
for each spatial loop l ∈ L

initialize skew factors sl = rsl = 0;

for each dependence δ
′

carried by t

sl = max(sl,−distl(δ′));
if l has periodic boundary conditions

rsl = max(rsl,min(distl(δ
′
), Ul−Ll+1−distl(δ′))).

3.2 Recursive Partitioning
For cached data to be reused in multiple time steps, each
prism needs to be small enough to fit in the relevant cache.
In this section, we present a recursive partitioning frame-
work for the prismatic skewing and address issues of choos-
ing base block size and recursive ordering.

3.2.1 Determining Base Block Size
If locality were the only concern, it would be sufficient to
partition the iteration space until each block consists of a
singleton. The overhead of approximately n1 ×n2 × ...×nm

calls to leaf routines will negate the locality advantages. In-
stead, we choose to cut off the recursion at a base case size
that is guaranteed to fit in the primary cache of any system
of interest. ComputeBaseSize illustrates the computa-
tion of the base block size, BLOCK, based on the data
volume of an unclipped prism and target primary cache
size. The algorithm first computes the data space accessed
for each array A in the tiled time step loop by taking the
union of the data spaces touched within a single time step
t, DA,t(BLOCK), denoted volA,t(BLOCK). If �s is the
skew factor vector of the prismatic skewing, each time step

will touch
Pdim(�s)

i=1 (si
BLOCK

∗ volA,t(BLOCK)) locations in
the array that are not already touched by previous time
steps. To avoid making BLOCK too small, we execute
BLOCK

smax
time steps in the prism, where smax = max{si | 1 ≤

i ≤ dim(�s)}. The data volume touched in array A across
BLOCK

smax
steps is volA,t(BLOCK)∗(1+

Pdim(�s)
i=1

si
smax

). Tak-
ing the sum of data volumes for all array variables touched in
the prism yields the total data volume. We choose BLOCK
so that the total data volume does not exceed the effective
size of the primary cache cs. For cases in which the total
number time steps is smaller than BLOCK

smax
, we recompute

the BLOCK with the smaller number.

ComputeBaseSize(L, �s, cs)
L: set of loops to which recursive skewing is applied;
�s: skew factor vector;
cs: effective cache size;
smax = max{si | 1 ≤ i ≤ dim(�s)};
for each array referenced inside loop t, A ∈ array(t)

determine data set of A accessed by each t step:
DA,t(BLOCK) =

S
r∈refA(t)D

r
A,t(BLOCK);

compute data volume volA,t(BLOCK);
compute data volume volA(BLOCK) in BLOCK

smax

steps of t: volA(BLOCK) =

volA,t(BLOCK) ∗ (1 +
Pdim(�s)

i=1
si

smax
);

voltotal(BLOCK) =
P

A∈array(t) volA(BLOCK);

select base block size BLOCK so that
voltotal(BLOCK) ≤ cs;

if (BLOCK
smax

> ubt − lbt + 1)
recompute base black size BLOCK so thatP

A∈array(t)(volA,t(BLOCK)∗
(1 +

Pdim(�s)
i=1 si∗(ubt−lbt+1)

BLOCK
)) ≤ cs;

3.2.2 Partitioning the Computation
Dependences between prisms that are loop-independent, car-
ried by spatial loops, or carried by the time step loop can
all prevent naive partitioning. The skewing transformations
described in Section 3.1 are used to transform these de-
pendencies so they are all in a forward direction when the

prisms are executed in either a lexicographic or an appro-
priate recursively-defined execution order. The latter have
the advantage over lexicographic orders in that they foster
temporal reuse of data from sibling prisms that are resident
in secondary and higher levels of the cache.

To define an recursive execution order with good inter-prism
reuse, we use bisection and Morton ordering. Figure 5 shows
a 2-D Morton curve. ChoosePartitioningandOrder shows
the process of recursive partitioning and execution order of
the result subspaces. First, the m dimensional spatial iter-
ation space n1 × n2 × ... × nm is bisected recursively along
the longest dimensions until dimensions of each subspace

n′
1 × n′

2 × ...× n′
m are balanced, i.e.

n′
max

n′
min

< 2, where n′
max

and n′
min are the longest and shortest dimensions of the

subspace. Each subspace is further 2m-way partitioned into

subspaces of size
n′
1
2
× n′

2
2
×...× n′

m
2

until the length along any
one axis does not exceed the base block size BLOCK. Pris-
matic skewing is then applied at the base level as discussed
in the previous section. Cut points are carefully chosen to
be at primary cache line boundaries to improve reuse. cls is
the primary cache line size.

ChoosePartitioningandOrder(L)
L: set of loops to which recursive skewing is applied;
minL = {i | ubi − lbi = mink∈L(ubk − lbk)};
maxL = {i | ubi − lbi = maxk∈L(ubk − lbk)};
if (ubmaxL − lbmaxL < 2 ∗ (ubminL − lbminL))

use 2nestLevel(L)-way partitioning and Morton
ordering for the loops in L;

set ranges of i (i ∈ L) after partitioning:

[lbi : � �(lbi+ubi)/2�
cls

� ∗ cls],
and [� �(lbi+ubi)/2�

cls
� ∗ cls+ 1 : ubi];

else
use 2-way bisection and lexicographical ordering;
set ranges of loop maxL after partitioning:

[lbmaxL : � �(lbmaxL+ubmaxL)/2�
cls

� ∗ cls]
and [� �(lbmaxL+ubmaxL)/2�

cls
� ∗ cls+ 1 : ubmaxL];

3.3 Inter-procedural Analysis
Typically, the temporal and spatial loops in large applica-
tions are spread across multiple routines. Inter-procedural
analysis is essential if RPTS and related techniques are to
be applied to these codes. In our current interprocedural
framework, we assume indices of the spatial loops are only
used locally. For cases that spatial loop indices are used
globally or passed at call sites, selective inlining substitu-
tion or loop embedding [12] is used. Prismatic time skewing
can be applied w.r.t. multiple time step loops as long as
they are not imperfectly nested. For time step loops that
are imperfectly nested, only the innermost is transformed.
Figure 6 shows a code segment with a time step loop and
five-point stencil computation in different routines.

Our inter-procedural analysis framework operates in two
phases. In the first phase, we identify time step loops by
a bottom-up pass followed by a top-down pass through the
call graph. In the bottom-up pass, IdentifyNonItera-
tiveLoop marks a scalar variable as non-iterative if it is
used to compute a subscripted reference. At each call site,
if a dummy parameter is non-iterative, we mark the scalar

do t = 1, Ut

call foo(a, b)
do j = 1, n

do i = 1, m
b(i, j) = a(i, j)

...
subroutine foo(a, b)
...
do j = 2, n− 1

do i = 2, m− 1
a(i, j) = (b(i, j) + b(i− 1, j) + b(i+ 1, j)

+ b(i, j − 1) + b(i, j + 1))/5

Figure 6: An example with temporal and spatial
loops in separated routines.

variables used in the corresponding actual parameter as non-
iterative. MarkNonIterativeVars marks the variable as
non-iterative if it is a loop index variable, an induction vari-
able, a formal parameter of a routine, or a global variable.
It also recursively checks the variables in right-hand-side
of the reaching definitions of use. In the top-down pass,
SelectLoopsForSkewing marks a loop variable t as it-
erative if it is not non-iterative and select a non-iterative
loop i for skewing if there is no data dependences with non-
constant distance at the level of loop i or dependence δ
such that A(fsrc(�i)δA(fsink(�j) and i ∈ f−1

sink(fsrc(�i)) - �i or

j ∈ f−1
src(fsink(�j)) - �j. At each call site, we propagate this

information from caller to callee.

IdentifyNonIterativeLoop(C)
C: a call graph of the original code;
for each routine P of C in bottom-up order

for each subscripted reference ref in P
for each use use of a scalar variable var in ref

MarkNonIterativeVars(use);
for each call site c

if callee is marked as iterativeExist
mark enclosing loops of c as non-iterative;
mark P as iterativeExist;

if a dummy parameter dpar is non-iterative
for each use use of scalar variables in the

corresponding actual parameter apar
MarkNonIterativeVars(use);

if there is a loop that is not marked as non-iterative
remark its enclosing loops as non-iterative if they

haven’t been marked;
mark P as iterativeExist.

SelectLoopsForSkewing(C, G, cfg)
C: a call graph of the original code;
G: a dependence graph annotated with distance vectors.
cfg: a control flow graph of each routine;
initialize loop set L = ∅;
attach L to the main routine;
for each routine P of C in top-down order

for each L attached to P;
for each node of cfg of P in top-down forward order

if the node is a loop t and it is not non-iterative
mark t as iterative;
L = L ∪ {t};

L = L ∪ {i | i is a loop enclosed in t};
L = L − {i | i is a loop enclosed in t and there

is a dependence δ such that distlevel(i)(δ)
is not constant} − {i, j | i and j are loops
enclosed in t and there is a dependence δ
such that A(fsrc(�i)) δ A(fsink(�j)) and

i ∈ f−1
sink(fsrc(�i)) −�iW j ∈ f−1

src(fsink(�j))

− �j)};
if the node is call site c

propagate L to the callee as Lc.

During the second phase, a bottom-up traversal of the call
graph computes spatial skew factors and temporal skew fac-
tors for each of the spatial loops, estimates data volume for
a prism, and summarizes and propagates the information
upward along the graph. Preskewing spatial loops w.r.t.
enclosing spatial loops is performed if it is necessary. Depen-
dence information is updated after preskewing. Spatial skew
factors are computed with ComputeSpatialSkewFactors
and finalized as ŝi for each spatial loop i by ŝi = maxj∈L ˆsi,j

and ŝi = max(ŝi, ˆsi,j + ŝj) if there exists spatial loop j such
that ˆsi,j
= 0. Spatial loops are skewed w.r.t. each other with
the finalized spatial skew factor. After that, temporal skew
factors are computed with ComputeTemporalSkewFac-
tors and adjusted by choosing the maximum value of the
skew factors of corresponding spatial loops in sibling loop
nests. Computed skew factor and base block size for recur-
sive skewing are finally propagated downward along the call
graph. Information on skew factors and blocking size may
different for different call sites of a callee.

For the example shown in Figure 6, IdentifyNonItera-
tiveLoop first marks loops i and j in subroutine foo and
the caller as non-iterative. Then SelectLoopsForSkew-
ing identifies loop t as iterative and adds loop t and spatial
loops i and j after the call site into loop set L attached to
the caller. Loop set attached to foo is computed as t, i, j,
where i and j are the spatial loop inside foo. During the
second phase, spatial skew factors for skewing the spatial
loop i and j in the caller w.r.t. the other spatial loops in L
are 1 according to ComputeSpatialSkewFactors. After
skewing the spatial loops with spatial skew factor, temporal
skew factors are computed to be (2,2) with ComputeTem-
poralSkewFactor.

3.4 Code Generation
Applying prismatic time skewing to a program may involve
preskewing spatial loops w.r.t. enclosing spatial loops, skew-
ing spatial loops w.r.t. other spatial loops in their sib-
ling loop nests, and skewing spatial loops w.r.t. time step
loops. We have briefly described code generated by apply-
ing preskewing and skewing spatial loops w.r.t. other spatial
loops in sibling loop nests in Section 3.1.1. In this subsec-
tion, we discuss how to generate code for a prism and apply
recursive blocking on top of it.

Once we have computed the temporal skew factor vector �s
and the prism size, code generation for a prism consists of
following three steps. First, clip the range of the original t
loop to [lbt : ubt]. Then, for each spatial loop i that needs to
be skewed w.r.t. the time step loop, the original lower and
upper bounds [Li : Ui] are replaced with [max(Li, lbi − si ∗
(t− lbt)) : min(Ui, lbi − si ∗ (t− lbt) +BLOCKi −1)], where

BLOCKi is the base block size for loop i, and lbi is the lower
bound of loop i at the time step t = lbt. Finally, insert if-
conditions for statements that are not originally enclosed by
any n of the skewed spatial loops to preserve loop indepen-
dent dependence between the statements and the loops be-
fore and after them. n is the number of blocked dimensions
in spatial domain. For loops with periodic boundary condi-
tions, the prisms at the lower boundaries will be clipped by
Li + rsi ∗ (t − lbt) instead of Li. The prisms being clipped
at the lower boundaries will be wrapped with the matching
prisms at the upper boundaries.

CodeGenForPrism(L, �s, �rs,�b, lbt, ubt)
L: nested loops on which prismatic skewing is applied;
�s: skew factor vector;
�rs: skew factor vector for reverse skewing;
�b = (BLOCK1, BLOCK2, ..., BLOCKl): the ranges

along each dimension of l spatial loops;
lbt, ubt: lower and upper bounds of the time steps we

are exploiting temporal reuses.
modify the range of the t loop to [lbt : ubt];
for each spatial loop i in L with bounds Li, and Ui

if i has no periodic boundary conditions
modify the loop range to

[max(lbi − si ∗ (t− lbt), Li)
: min(lbi +BLOCKi − 1 − si ∗ (t− lbt), Ui)];

else
create a loop ibound before loop i with loop range

[max(lbi − si ∗ (t− lbt), Ui + 1)
: min(lbi − si ∗ (t− lbt) +BLOCKi − 1,

Ui + rsi ∗ (t− lbt))];
insert statement i = mod(ibound, Ui) + Li − 1 as

the first statement of the loop;
copy the original loop body next to the statement;
modify the loop range of i to

[max(lbi − si ∗ (t− lbt), Li + rsi ∗ (t− lbt))
: min(lbi +BLOCKi − 1 − si ∗ (t− lbt), Ui)];

for each statement that is not originally enclosed by any
n of the spatial loops that are skewed w.r.t. t

insert proper if-conditions to preserve dependences.

As an example, we present the following 2D five point stencil
code. Without loss of generality, we normalized loop bounds
in the code. Array a is a double precision array of size 1K×
1K. Ut is the upper bound of the time step loop. Ui, and Uj

are the upper bounds of the two spatial loops.

do t = 1, Ut

do i = 1, Ui

do j = 1, Uj

a(j, i) = 0.125 ∗ (a(j + 1, i) + a(j − 1, i)
+ a(j, i+ 1) + a(j, i− 1) + 4 ∗ a(j, i))

There are two classes of dependences in the code: depen-
dences carried by the time step loop and dependences car-
ried by spatial loop i or j. Their distance vectors are (1, -1,
0), (0, 1, 0), (1, 0, -1), (0, 0, 1), and (1, 0, 0). Each point
is updated based on its value at the previous time step and
the values of its four neighbors. Of the neighbors, two are
computed in the previous time step, while the other two
are updated in the current time step. ComputeSkewFac-
tors skews the spatial loops i and j w.r.t. the time step
loop with the vector (1,1). Since the boundary condition is

non-periodic, the reverse skew factor vector �rs is �0. Since
there is only one spatial loop nest, skewing or alignment be-
tween sibling spatial loops is not needed. The code for the
execution of a prism is shown below.

do t = lbt, ubt
do i = max(lbi − t+ lbt, 1),

min(lbi +BLOCKi − 1 − t+ lbt, Ui)
do j = max(lbj − t+ lbt, 1),

min(lbj +BLOCKj − 1 − t+ lbt, Uj)
a(j, i) = 0.125 ∗ (a(j + 1, i) + a(j − 1, i)

+ a(j, i+ 1) + a(j, i− 1) + 4 ∗ a(j, i))

Any legal ordering can be used to iterate through the prisms.
Lexicographical ordering can be implemented by creating
an outer loop iout for each spatial loop i to traverse the
space of prisms, replacing the lower bound of i, lbi, at the
time step t = lbt with iout, and creating an outer time step
loop tout to iterate the time blocks. In general, the outer
loop will have to iterate through additional (clipped) prisms
besides �Ui−Li+1

BLOCKi
� to cover the entire range of i. Com-

puteExtraPrisms calculates the number of prisms needed
additionally based on base block size and skew factors.

ComputeExtraPrisms(L, �s, �rs,�b)
L: the nested loops the prismatic skewing is applied;
�s: skew factor vector;
�rs: skew factor vector of reverse skewing for loops with

periodic boundary conditions;
�b = (BLOCK1, BLOCK2, ..., BLOCKl): the ranges

along each dimension of l spatial loops;
for each spatial loop i in L

if i has no periodic boundary conditions

ri = � (ubt−lbt)∗si−(� Ui−Li+1
BLOCKi

�∗BLOCKi−(Ui−Li+1))

BLOCKi
�;

else

ri = � (ubt−lbt)∗(si+rsi)−(�Ui−Li+1
BLOCKi

�∗BLOCKi−(Ui−Li+1))

BLOCKi
�;

return (r1, r2, ..., rl);

Code generation to add recursive blocking to prismatic skew-
ing and to traverse the prisms in, for instance, Morton or-
der has four steps. The original time step loop and its loop
body is replaced with a recursive call parameterized by the
lower and upper bounds of each spatial loop to be skewed.
As in code generation for non-recursive prismatic skewing,
the range of each spatial loop may need to be extended or
clipped. The code generator then creates a recursive rou-
tine including code for a prism at base level as discussed
in the previous subsection. For the base case, the lower
bound of loop i in the code for a prism, lbi, is generated
using the passed lower bound. At internal nodes of the re-
cursion, the synthesized routine calls itself recursively with
reduced bounds and using Morton ordering to satisfy the
dependences left after skewing. Finally, a generated outer
loop tout iterates through the layers of prisms along the time
dimension.

CodeGenForRecursiveSkewing(L, �s, �rs,�b, lbt, ubt)
L: nested loops the prismatic skewing is applied;
�s: skew vector;
�rs: reverse skew vector for loops with periodic

boundary conditions;

�b = (BLOCK1, BLOCK2, ..., BLOCKl): the ranges
along each dimension of l spatial loops;

lbt, ubt: lower and upper bounds of the time steps we
are exploiting temporal reuses.

compute extra prisms to iterate:

(r1, ..., rl) = ComputeExtraPrisms(L,�s, �rs,�b);
replace the original loop L with a recursive call and

pass parameters Li and Ui + ri ∗BLOCKi as
lower and upper bounds of spatial loop i which needs
to be skewed w.r.t. the time step loop;

create recursive routine with code generated by

CodeGenForPrism(L,�s, �rs,�b, lbt, ubt)
for a prism at base level

insert recursive calls at upper level as described in
ChoosePartitioningandOrder;

create an outer loop tout iterating multiple time blocks;

Applying time skewing to convergence loops of iterative meth-
ods raises several problems for which we currently have no
automatable solution. Convergence is usually tested on ev-
ery iteration. If the method is stable then it may be accept-
able to test convergence only at the end of the prism compu-
tation, i.e. every ubt − lbt + 1 time steps. If it is important
to exactly replicate the behavior of a non-skewed execution,
speculative execution [19] could be used to roll back to
the first converged iteration. This is done by checkpointing
the computation at between layers of prisms in the “conver-
gence” dimensions. If there is early convergence, the execu-
tion could be replayed from the checkpoint using the original
execution order with convergence tests on every time step.
Many iterative methods compute one or more global inner
products on every iteration and use the computed value(s)
in the next iteration.

4. EXPERIMENTAL RESULTS
We are currently implementing recursive prismatic time skew-
ing in the Rice dHPF compiler infrastructure[1, 2]. To eval-
uate the effectiveness of the ideas, we manually applied the
analyses and transformations to a set of benchmark pro-
grams. Due to space limitation, we only include results of
two numerical kernels, Jacobi and SOR, one hydrodynamic
kernel from the Livermore benchmarks; and SMG988 [6],
a semi-coarsening multi-grid benchmark written in C. For
repeatability, experiments for the three kernels were per-
formed on an SGI O2 workstation with a 195 MHz MIPS
R10K processor, 256MB main memory, a 32KB 2-way on-
chip L1 data cache, a 1MB 2-way unified L2 cache and a
64-way 512KB TLB. SMG98 requires more memory than is
available on the workstation, so experiments were performed
on one processor of a 16-processor SGI Origin 2000 with 300
MHz MIPS R12K processors, 10GB main memory, and 8MB
L2 caches. The kernels were compiled -O3 with the MIPSpro
F77 compiler V7.3.1.1 and SMG98 was compiled -O2 with
the MIPSpro C compiler. Hardware performance counters
and perfex were used to measure execution time and cache
misses. We measured L1 and L2 cache misses in separate
runs to avoid multiplexing the performance counters. Each
experiment was repeated 5 times. Variations were small and
the average measurements are presented. Execution time for
SMG98 is not reported because we were not able to run the
code in dedicated mode on the SGI Origin.

We compared our transformed codes with hand implemen-

Table 5: L1(L2) Cache misses (in millions) of LIVERMORE 18.
Test Cases 400 600 800 1000 1200

orig 53.2(21.3) 116.(50.8) 547.(84.6) 317.(143.) 458.(217.)
SSB 49.9(11.6) 118.(25.6) 560.(44.0) 262.(61.9) 469.(152.)
Song & Li 59.6(1.51) 152.(4.47) 563.(10.5) 438.(30.1) 625.(82.7)
RPTS 16.0(1.02) 69.6(2.95) 202.(3.82) 140.(6.19) 163.(17.0)

Table 1: L1(L2) Cache misses (in millions) of SOR.

Test Cases 512 1024 2048 4096

orig 4.82(2.29) 29.3(8.78) 180.(35.1) 312.(141.)
SSB 4.99(2.18) 28.5(8.60) 158.(34.1) 324.(139.)
Song & Li 4.83(0.08) 29.1(0.35) 76.7(2.56) 455.(18.0)
RPTS 0.49(0.07) 2.07(0.28) 12.5(1.18) 48.3(5.63)

Table 2: Sequential execution time (in million cy-
cles) of SOR.

Test Cases 512 1024 2048 4096

orig 403 1761 6625 27569
SSB 412 1586 6370 27778
Song & Li 106 446 1961 9160
RPTS 94 398 1603 6929

tations of the techniques described in recent papers by Song
and Li [18, 19] and Wonnacott [22]. These versions of the
benchmarks are denoted “new tiling” and “time skewing”,
respectively. For new tiling we used odd-even duplication,
loop fusion, and forward substitution since this combination
was reported to produce the best results. For SOR we used
in-place computation in all implementations to save storage
and extra copying. The choice of nstep (tile size) for each
problem instance was chosen by picking the best performer
in a range from 10% to the full size of the secondary cache.
Although 0.3 of the physical cache size was cited as the op-
timal size, we found that other sizes often worked better.

We produced a test code using Wonnacott’s time skewing
only for Jacobi, since the other kernels have loop carried de-
pendences in all of the spatial dimensions. We used blocked
storage mapping because it was clear that it would perform
best for a Jacobi four point stencil and it was not clear how
to implement time skewed storage mapping. The tile sizes s
used for time skewing are the ones that performed best for
each problem size.

To better evaluate how much performance improvement is
due solely to explicit spatial skewing and blocking, and to
better evaluate the additional benefit of time skewing and re-
cursive blocking, we also measured execution time and cache
misses for versions of the numerical kernels and the Liver-
more benchmark that use explicit spatial skewing and block-
ing. These are denoted “SSB” in the tables shown below.
Blocking sizes used for the data presented are the ones that
performed best.

4.1 SOR
SOR (successive over-relaxation) uses a two-dimensional five
point Gauss-Seidel relaxation step. The number of time

Table 3: L1(L2) Cache misses (in millions) of JACOBI.

Test Cases 512 1024 2048 3072

orig 19.0(8.79) 98.0(34.2) 377.(137.) 867.(309.)
SSB 12.2(4.15) 90.3(16.7) 433.(67.3) 803.(152.)
Song & Li 9.80(0.21) 59.8(0.89) 247.(6.36) 523.(35.0)
Wonnacott 1.03(0.33) 6.69(1.76) 56.9(8.27) 60.7(21.2)
RPTS:minmem 1.37(0.04) 5.57(0.46) 27.8(1.61) 50.7(4.13)
RPTS:nocopy 1.39(0.13) 6.39(0.76) 25.5(2.43) 59.6(5.21)

Table 4: Sequential execution time (in million cy-
cles) of JACOBI.

Test Cases 512 1024 2048 3072

orig 1462 5806 23501 52933
SSB 821 3343 13542 30637
Song & Li 138 575 2729 8905
Wonnacott 188 987 4342 9781
RPTS:minmem 148 661 2752 6006
RPTS:nocopy 95 409 1601 3816

steps was fixed at 64 and we used matrix dimensions of N =
512, 1024, 2048, and 4096. For the new tiling code the nstep
for these four data sizes were 60, 30, 23, and 15 because
they produced better cache and overall performance than
the other choices [19]. To reduce cache conflict misses, the
MIPSpro compiler pads arrays in both the original program
and in the new tiling version, but it failed to do so for the
prismatic skewing version. We therefore applied the same
padding increment manually. In the prismatic skewing case
we turned off prefetching because it was ineffective without
manifest knowledge of the loop bounds at the base case of
the recursion. Automatic blocking was turned off because
recursion achieves the same effect. These two optimizations
were effective for the other two versions, so they were left
on for those experiments. The base block size for prismatic
skewing is 21 across all four data sizes. Results presented
in Table 1 and Table 2 indicate that blocking spatial loops
alone cannot effectively reduce cache misses and execution
time. Both Song and Li’s version and ours significantly im-
proved cache and overall performance by exploiting data
reuses across time steps. By using multidimensional time
skewing and recursive blocking, primary cache misses are
reduced by factors of 6 to 14 over new tiling and secondary
cache misses are decreased by about 14% to a factor of 3 bet-
ter than new tiling. Execution time is improved by about
a factor of 4 over the original program and by 12% to 32%
over new tiling.

4.2 2D Jacobi
2D Jacobi uses Jacobi relaxation with a four point stencil.
There are no dependences carried on the spatial loops. We

Table 6: Sequential execution time (in million cy-
cles) of LIVERMORE 18.

Test Cases 400 600 800 1000 1200

orig 3694 8742 18952 24582 37038
SSB 2275 5014 12148 13255 29659
Song & Li 1000 2438 8496 9688 20453
RPTS 841 2095 4751 6136 10785

used 64 iterations and problem arrays that were 512, 1024,
2048, and 3072 elements on a side. Additional space is nec-
essary to preserve old values located within each tile and on
the boundaries between tiles. We only used the minimum
storage to keep the old values until they are not needed any-
more. The amount of additional storage used depends on
dependence distances and the number of time steps we are
exploiting data reuses. For the experiments we performed,
we are able to reduce storage to 75M and 2.5M bytes for 512
by 512 and 1K by 1K problems from 144M and 4M compared
with other three versions. However cost of storage saving is
extra copyings to preserve old values. To understand this
cost of extra copying, we also include performance data for
an implementation without copying, but using as much stor-
age as the other three non-RPTS versions. The two RPTS
versions are marked as RPTS:nocopy and RPTS:minmem
in Table 3 and 4.

For new tiling nstep was set to 50, 12, 14, and 6 for data sizes
512, 1024, 2048, and 3072, respectively. The tile sizes used
for time skewing are 28, 12, 12, and 12, respectively. We
also applied optimizations to eliminate most of the mod and
div in the transformed code shown in [22]. The base block
size for prismatic skewing was 16. As in the case of SOR,
we used manual array padding and turned off automatic
blocking and prefetching options in the compiler.

As Table 3 shows, spatial skewing and blocking (SSB) is
able to reduce secondary cache misses by about a factor
of 2, and execution time by 73% to 78% over the original
version. The improvement comes from data reuses across
spatial loop nests. Other versions further improve cache
and overall performance to different extent by exploiting
reuses across time steps in different ways. The time skew-
ing version exhibits very high L1 cache reuse, while the
new tiling effectively reduces L2 cache misses in most cases.
RPTS:minmem achieves better cache reuses than these ver-
sions in all cases except one. For the 512 by 512 problem, our
L1 cache misses figure is about 35% larger than that of time
skewing. We believe that this is because our transforma-
tions limit the ability of the MIPSpro compiler to perform
certain optimizations and that this becomes significant for
this small problem. Execution time of RPTS:minmem is as
much as 15% longer than that of new tiling for small problem
size because of the cost of extra copyings. This advantage
disappears for larger problem sizes; execution time is about
48% shorter than that of new tiling for 3K by 3K problem.
RPTS:nocopy, the version without copying, achieves best
overall performance in all cases with a moderate increase
of cache misses compared with RPTS:minmem. We are cur-
rently investigating the gap between two RPTS versions and
should be able to shorten it by improving management of
copyings. Overall, RPTS shows an improvement in exe-

Table 7: Cache misses (in millions) of SMG98.
Code L1 misses L2 misses

orig opt orig opt

residual 4327 3114 457 232
cyclic reduction 4187 3220 506 132
total 9406 7388 1100 502

cution time compared with the native compiler by factors
between 13.87 to 15.33 and compared to time skewing and
new tiling by up to 133%. See Table 4.

4.3 Livermore 18
Livermore 18 is a hydrodynamic kernel code. The programs
were run for 64 iterations on arrays of 400, 600, 800, 1000,
and 1200 elements on a side. Blocking with spatial skewing
is able to substantially reduce secondary cache misses, re-
sulting in a 25% to 85% overall performance improvement
over the original code. However, there is still a significant
amount of data reuse across time steps. New tiling signif-
icantly outperforms both of the non-time-skewed versions.
The tiling sizes nstep were 17, 10, 8, 4, and 2, respectively,
for each of the problem sizes. RPTS used 16 as the size of the
base block. Array padding was not used since the MIPSpro
compiler did not add padding and cache conflict misses do
not significantly affect performance. Compared with both
the original and new tiling versions of the program, RPTS
reduced L1 cache misses by 67% to 382%. Compared to the
new tiling version, L2 misses are reduced by 48% to 487%.
See Table 5. Execution time improves by factors between
3.43 and 4.39 compared to the original code and by 16% to
90% compared to the new tiling version. See Table 6.

4.4 SMG98
SMG98 [6] is a semi-coarsening multi-grid benchmark pro-
gram that is approximately 21000 lines of C source code.
It is a memory intensive code. For 3D problems, each data
point uses roughly 54 doubles. We ran for 5 iterations with
a data size of 128 × 128 × 128 for the working arrays and
vectors. The program performs two sweeps of red/black
plane(line) pre-relaxation and post-relaxation in each multi-
grid V-cycle. Because data dependences exist at each level
of the multi-grid, RPTS was applied only to the y and z
dimensions in the pre-relaxation sweeps. Base block size is
chosen to be 4 × 4. We transformed two routines in the
application, the 1D direct solver cyclic reduction and the
residual computation routine residual. For the chosen data
size, each of these routines accounts for 30% to 40% of pri-
mary cache misses, secondary cache misses, and execution
time in the original program. Inter-procedural analysis was
essential for identify the iterative loop and the spatial loops
for prismatic skewing, and for propagating the skewing fac-
tor. The transformed code reuses data across both of the
red-black relaxation sweeps, and within and between the
down and up phases of the V-cycle. This reduces the total
L1 cache misses by 27% and L2 cache misses by 119% as
shown in Table 7.

5. FINAL COMMENTS
We describe an integrated approach for improving multi-
level memory hierarchy performance in large-scale scientific

applications. Recursive prismatic time skewing (RPTS) im-
proves temporal locality at three levels: within a block for a
single time step, across multiple time steps within a prism,
and between prisms. An inter-procedural analysis and code
generation framework enables us to apply these techniques
to some kinds of large-scale scientific application. Experi-
mental results indicates that the technique can significantly
outperform previously published methods techniques on ker-
nel benchmarks, and it improves memory hierarchy perfor-
mance of part of a real application.

While RPTS can be applied to one class of application, in-
creasing temporal reuse is an important issue for a much
wider range of program. In particular, iterative methods
with convergence tests and/or global inner products com-
puted on every iteration cannot be automatically transformed
by our techniques. Either semi-automatic methods or the
development of new algorithms are indicated in these cases.

Acknowledgments
We would like to thank Charles Koelbel and the anonymous
referees for their valuable comments and suggestions. This
research was supported in part by NCSA under National Sci-
ence Foundation cooperative agreement ACI-9619019, the
DOE ASCI Program under research subcontract B347884,
and the Los Alamos National Laboratory Computer Science
Institute (LACSI) through LANL contract number 03891-
99-23 as part of the prime contract (W-7405-ENG-36) be-
tween the DOE and the Regents of the University of Cali-
fornia.

6. REFERENCES
[1] V. Adve, G. Jin, J. Mellor-Crummey, and Q. Yi. High

Performance Fortran Compilation Techniques for
Parallelizing Scientific Codes. In Proceedings of SC98: High
Performance Computing and Networking, Orlando, FL,
Nov 1998.

[2] V. Adve and J. Mellor-Crummey. Using Integer Sets for
Data-Parallel Program Analysis and Optimization. In
Proceedings of the SIGPLAN ’98 Conference on
Programming Language Design and Implementation,
Montreal, Canada, June 1998.

[3] N. Ahmed, N. Mateev, and K. Pingali. Synthesizing
transformations for locality enhancement of
imperfectly-nested loop nests. In Proceedings of the 2000
ACM International Conference on Supercomputing, Santa
Fe, NM, May 2000.

[4] N. Ahmed, N. Mateev, and K. Pingali. Tiling
imperfectly-nested loop nests. In Proceedings of SC’00:
High Performance Networking and Computing, Dallas, TX,
Nov. 2000.

[5] N. Ahmed and K. Pingali. Automatic generation of
block-recursive codes. In Proceedings of the Euro-Par2000,
Munich, Germany, Aug. 2000.

[6] P. N. Brown, R. D. Falgout, and J. E. Jones.
Semicoarsening multigrid on distributed memory machines.
SIAM J. Sci. Comput, 21(5):1823–1834, 1999.

[7] D. Callahan, S. Carr, and K. Kennedy. Improving register
allocation for subscripted variables. In Proceedings of the
SIGPLAN ’90 Conference on Programming Language
Design and Implementation, White Plains, NY, June 1990.

[8] S. Carr and K. Kennedy. Compiler blockability of
numerical algorithms. In Proceedings of Supercomputing
’92, Minneapolis, MN, Nov. 1992.

[9] S. Carr and K. Kennedy. Improving the ratio of memory
operations to floating-point operations in loops. ACM
Transactions on Programming Languages and Systems,
16(6):1768–1810, 1994.

[10] S. Coleman and K. S. McKinley. Tile size selection using
cache organization. In Proceedings of the SIGPLAN ’95
Conference on Programming Language Design and
Implementation, La Jolla, CA, June 1995.

[11] J. Frens and D. Wise. Auto-blocking matrix multiplication
or tracking blas3 performance from source code. In
Proceedings of the Sixth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages
206–216, Las Vegas, NV, June 1997.

[12] M. W. Hall, K. Kennedy, and K. S. McKinley.
Interprocedural transformations for parallel code
generation. In Proceedings of Supercomputing ’91,
Albuquerque, NM, Nov. 1991.

[13] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric
multi-level blocking. In Proceedings of the SIGPLAN ’97
Conference on Programming Language Design and
Implementation, Las Vegas, NV, June 1997.

[14] M. Lam, E. Rothberg, and M. E. Wolf. The cache
performance and optimizations of blocked algorithms. In
Proceedings of the Fourth International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS-IV), Santa Clara, CA, Apr.
1991.

[15] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data
locality with loop transformations. ACM Transactions on
Programming Languages and Systems, 18(4):424–453, July
1996.

[16] N. Mitchell, K. Högstedt, L. Carter, and J. Ferrante.
Quantifying the multi-level nature of tiling interactions.
International Journal of Parallel Programming, 26(5),
1998.

[17] H. Prokop. Cache-oblivious algorithms. Master’s thesis,
Department of Electrical Engineering, MIT, June 1999.

[18] Y. Song and Z. Li. A compiler framework for tiling
imperfectly-nested loops. In Proceedings of the Twelfth
International Workshop on Languages and Compilers for
Parallel Computing, La Jolla, CA, Aug. 1999.

[19] Y. Song and Z. Li. New tiling techniques to improve cache
temporal locality. In Proceedings of the SIGPLAN ’99
Conference on Programming Language Design and
Implementation, Atlanta, GA, May 1999.

[20] M. J. Wolfe. Loop skewing: The wavefront method
revisited. International Journal of Parallel Programming,
15(4):279–293, Aug. 1986.

[21] M. J. Wolfe. High Performance Compilers for Parallel
Computing. Addison-Wesley, Redwood City, CA, 1996.

[22] D. Wonnacott. Time skewing: A value-based approach to
optimizing for memory locality. Submitted for publication.

[23] Q. Yi, V. Adve, and K. Kennedy. Transforming loops to
recursion for multi-level memory hierarchies. In Proceedings
of the SIGPLAN ’00 Conference on Programming
Language Design and Implementation, Vancouver, Canada,
June 2000.

