
Improving Performance with Integrated Program Transformations

Apan Qasem Guohua Jin John Mellor-Crummey
Department of Computer Science

Rice University
Houston, Texas

{qasem,jin,johnmc}@cs.rice.edu

July 3, 2003

Abstract

Achieving a high fraction of peak performance on today’s computer systems is difficult for complex scien-
tific applications. To do so, an application’s characteristics must be tailored to exploit the characteristics of
its target architecture. Today, commercial compilers do not adequately tailor programs automatically; thus,
application scientists must settle for lackluster performance or manually transform their codes into a form
that is complex and unmaintainable. In this paper, we describe a prototype source-to-source transformation
tool that enables application scientists to achieve high performance for scientific codes without changing
their natural coding style. Our tool supports a rich, integrated collection of optimizing transformations and
provides users with precise control over how these optimizations should be applied. In preliminary experi-
ments with the Runga-Kutta advection core from the NCOMMAS code for mesoscale weather modeling and
Livermore Loop 18, we have used our tool to double single-processor performance.

1 Introduction

Every few months, a new generation of microprocessors emerges that is rated to deliver considerably more peak
performance than the last. However, obtaining a high fraction of that performance is becoming increasingly
difficult. When the characteristics of a scientific application aren’t well matched to the characteristics of the
architecture on which it executes, performance can fall below 10% of peak. Tailoring a code to achieve the
best possible performance on a particular microprocessor-based architecture requires a complex set of program
transformations, each designed to optimize for one or more aspects (e.g. registers, cache, TLB, and floating-point
pipeline) of the target system. For data-intensive scientific applications, exploiting spatial and temporal reuse
of data whereever possible is especially important to minimize the demands that the applications place on the
underpowered memory subsystems found in today’s microprocessor-based architectures.

Sophisticated scientific codes can be difficult to optimize effectively for microprocessor-based architectures.
Often, application developers factor complex calculations into a series of small steps, with each step performing
a simple computation to advance some aspect of the program state. When codes are structured in this way,
individual loop nests typically consume values of one or more arrays and compute a result into a new array that
will be used by subsequent loop nests. Many developers prefer this coding style because it makes applications
simple to understand and maintain. However, such codes have a larger memory footprint because of the tem-
porary arrays they use. When data sets are large, they miss opportunities for temporal reuse because values
brought in to cache in one loop nest are evicted from cache before they can be reused in another.

While the causes of performance problems, analysis techniques to identify them and optimization techniques
to ameliorate them are understood (at least in principle) in the compiler community, automatic optimization
of complex scientific codes most often falls significantly short of the best possible performance. A recent paper
by Padua et al [24]. shows that both empirical and model-driven methods of code optmization lags behind the
performance that is obtained through careful hand optimization and that the reasons for this performance gap is
still not well understood. Choosing the best set of optimizing transformations is not easy because transformations
interact in complicated ways. Also, the best parameterization for a collection of transformations is highly
dependent on the code to which they are applied. In the words of Pike and Hilfinger [20], “a compilation system

1

that doesn’t expose parameters for tuning is necessarily suboptimal: no compiler that takes finite time can always
determine the best parameters for all programs.”

Tailoring large applications to modern architectures by manually restructuring them is often impractical. Not
only is the tailoring process labor intensive, but after transformations such as unrolling, blocking and iteration
set splitting are applied, codes become difficult to understand and maintain. To address this problem, we have
developed a source-to-source transformer that enables application scientists to achieve high performance with
programs written in Fortran 77, yet maintain their codes in a natural style. To improve performance, developers
augment their code with directives to control the application of optimizing transformations including multi-level
loop fusion, multi-level blocking, unroll-and-jam, and iteration space splitting. When our tool is run on a program
augmented with directives, it checks the legality of the optimizations specified by the directives, performs the
transformations requested and then outputs the transformed code in source form.

The principal novelty of our tool is its integrated support for a set of sophisticated transformations and the
precise control it gives users over how they are applied. The information from directives is passed not only to
the corresponding transformation but also to other interacting transformations that require it. Information is
also passed between transformation modules (e.g from loop alignment to fusion and storage reduction). Each
transformation has been tailored so that transformations can be applied in concert.

We describe preliminary experiments using our tool to tune the performance of three comptuational kernels:
the Runga-Kutta advection core from the NCOMMAS code for mesoscale weather modeling, Livermore Loop 18
and the swim code from SPEC 2000 benchmark. By using our tool to apply multiple transformations in concert,
we were able to double the performance of each of the codes on an SGI O2 workstation.

In the sections that follow, we review related work, describe our tool’s integrated transformation framework
along with key analysis and optimizations it provides, present results of preliminary experiments applying our
tool, and briefly discuss our conclusions and future plans.

2 Related Work

Loop fusion and loop blocking have been studied extensively [10, 11, 23, 7, 9, 18]. Fusion reduces reuse distance
of a particular data by merging two iteration spaces. Blocking reshapes an iteration space over a data domain by
partitioning it into tiles that fit comfortably into cache and then completing all computations on each tile before
moving to the next. Unroll-and-jam has been previously noted as a useful transformation for reducing pipeline
interlocks [5] and exploiting outer loop temporal reuse [4]. We selectively unroll-and-jam imperfect loops and
interleave statements from jammed loop bodies to reduce register lifetimes and improve ILP.

Many researchers have studied combining loop transformations with transformations for reducing the storage
of array temporaries [12, 15, 21, 16, 25, 20]. Lewis et al. [15] proposed using array level analysis and apply loop
fusion and array contraction directly to array statements for languages using array syntax. Gao et al. presented
a method called collective loop fusion [12]. They first partitioned a collection of loop nests into fusible clusters
using max-flow min-cut algorithm. Loop fusion and array contraction into scalars are performed on all loop
nests within a cluster. They only considered fusion of conformable loop nests and do not apply loop alignment
to remove fusion-preventing dependences.

Lim et al. used affine partitioning to support blocking and array contraction [16, 17]. Arrays are contracted to
scalars or lower-dimensional arrays within each independent thread and expended by a block size when blocking
is applied to interleave the threads. Our storage reduction framework is more general and it is also integrated
with other transformations in our framework.

Song et al. presented a network flow algorithm which provably minimizes memory requirement for multi-
dimensional cases [21]. To achieve that, loops are coalesced together into single-level loops before loops are fused
and after loop shifting is applied. Loop trip counts are assumed to be equal at the same corresponding loop level,
otherwise loops need to be prepeeled and partitioned. However, coalescing may introduce more conditionals and
subscript indexing overhead. They use a heuristic to avoid register spilling and excess cache misses to avoid over-
fusion. Our storage reduction is not to minimize memory requirement, but rather reduce it to nearly minimum
and generate efficient code as well.

Pike and Hilfinger [20] also exposed transformation parameters for tuning. In their work, they combine loop
fusion and tiling with array contraction in their Titanium compiler. However, their fusion and tiling only apply
to a set of consecutive foreach loops each containing a single statement. Our techniques apply to more complex
programs and include a more comprehensive set of transformations.

2

Unroll-and-Jam

Guard-free core

generation

Storage

Reduction

blockfuse ujclip

Directives

Annotated Source Code

Stmt Motion

Loop Alignment

Fusion

Blocking

Transformed Code

Figure 1: Overview of transformations. Figure 2: Controllable multi-level loop fusion.

A recent paper by Ghosh et al. [13] discusses the high level optimizer (HLO) developed by Intel for the
Itanium architecture. The main difference between HLO and our tool is that HLO does not expose any of the
transformation parameters for external control. We present a direct comparison of our tool with HLO in Section
5.

Our tool uses the Omega library to represent data and iteration sets [14]. Omega enables us to perform
complex transformations relatively easily and facilitates the integration of transformations in our framework.

3 Approach

Paul Woodward and his team in the Laboratory for Computational Science and Engineering (LCSE) at the Uni-
versity of Minnesota have considerable (painful) experience in manually restructuring sophisticated applications
to achieve high performance on microprocessor-based systems. Through a partnership forged as part of NCSA’s
Performance expedition, at Rice University we set out to build a source-to-source transformer that automates key
transformations employed by the Minnesota team. Using Rice University’s D System compiler infrastructure,
we developed a tool for performing source-to-source transformations of Fortran 77 programs. Our tool enables
application scientists to maintain codes in their natural form, yet achieve high performance by annotating the
codes with directives that indicate how the tool should restructure them to improve their efficiency.

Our program transformation tool enables complex optimizations to be applied in concert to achieve perfor-
mance that was previously only achievable through careful hand optimization. Figure 1 gives an overview of
our framework and shows the tight integration among the various transformations. We start off with source
code annotated with directives that specify the parameters for the transformations. The thin arrows in the
figure represent the flow of information from directives to the transformation modules and from one module to
another. The thick arrows show the sequence in which the transformations are applied. The key to the success of
this approach is to make each transformation aware of all other related transformations that are being applied.
Most information is derived from directives in the source code and is available to each transformation module
irrespective of the order in which transformations are applied. Because the transformations are closely related,
having relevant information about other transformations makes each transformation potentially more effective.
Below we illustrate key interactions between transformations as we discuss using transformations to improve
program performance.

3

Data-intensive scientific codes suffer from poor memory hierarchy utilization. Reuse can be improved by
transforming the code to reduce temporal reuse distance. Our tool employs multi-level loop fusion to reduce
temporal reuse distance in programs composed of multiple loop nests. Our tool supports selective loop fusion
at any or all levels, as we explain in Section 3.1. When a set of fused loops contains both the definition and all
uses of a temporary array, it is often possible to apply a storage reduction transformation to reduce the rank of
the array and/or the extent of one or more array dimensions. In some cases, an array can be contracted to a
scalar. We use a loop alignment transformation to offset iteration spaces with respect to one another to enable
fusion by preserving def-use ordering (i.e. respect to true data dependences) and to improve storage reduction
by shortening the dependence distances. To further improve temporal reuse, we apply a blocking transformation
to loops. When a loop is blocked, it can create an opportunity to further reduce storage by enabling the extent
along a blocked dimension of a temporary array to be reduced.

When multiple iteration spaces with overlapping but not identical loop ranges are fused, the resulting iteration
space may not lead to efficient code if there are conditionals in inner loops; this could be especially problematic
for software pipelining on processors that lack support for predicated execution. We developed a loop splitting
transformation that partitions an iteration space into three segments: a prologue, a core, and epilogue. The
core consists of the loop range in which all statements execute. The prolog and epilog consist of parts of the
iteration space where some, but not all of the statements are active. To improve pipeline utilization as well as
to create opportunities exploiting outer-loop we employ unroll-and-jam. For unroll and jam to be efficient, the
range of the unrolled loop must be a multiple of the unroll factor. Typically, unroll-and-jam creates a prolog
and/or epilog that deal with extra iterations. In our integrated tool, the loop splitting transformation ensures
that the range of the core loop is a multiple of the unroll factor; thus, it integrates prolog and epilog generation
for fusion with that for unroll-and-jam.

In the subsequent sections, we describe the key analyses and transformations supported by our tool along
with their interactions in a bit more detail.

3.1 Controllable multi-level loop fusion

In programs in which the computation is decomposed into a sequence of simple loop nests, opportunities for
temporal and/or spatial reuse of data in cache are often missed when operating on large data sets. In such
programs, one loop will often use or define values (or in the case of spatial reuse, cache lines) needed by a later
loop nest only to have them evicted from cache before that reuse is realized. To capitalize on such opportunities
for reuse, loop fusion is needed to bring multiple uses of values (or cache lines) closer together temporally.

When an array of multiple dimensions is manipulated by a program in several loop nests, there are several
ways in which these loop nests could be fused. Consider a pair of loop nests manipulating at least one common
three-dimensional array. For a moment, suppose there are no dependences preventing fusion between any of the
corresponding loops in the two nests. In this case, the outermost one, two, or all three loops could be fused to
shorten the distance between uses of values, cache lines, or TLB entries. It might seem that fusing as many loops
as possible would yield the best performance since temporal reuse distance would be shortest; however, fusing all
loops could result in a complex inner loop body that suffers too many conflict misses. In cases where dependences
prevent fusion at all levels, fusing on one or more levels may still be useful if the data arrays manipulated are
not enormous.

To enable an application programmer to precisely control how fusion is applied to a series of loop nests in
a program, we provide a fuse directive. By default, each loop is assigned a unique fusion group identifier and
will not be fused with any other loop. The fuse directive can be used to assign a particular fusion group id to
any loop. A fusion control tuple for a loop consists of a vector (whose length corresponds to the loop depth)
containing the fusion group id for the loop itself and each enclosing loop. Fusion group ids in a fusion control
tuple are organized according to the depth of the loop that they represent in ascending order. If two loops have
the same k elements in their fusion control tuples, fusion is legal and there are no intervening statements in
a different fusion group, then they are fused. Figure 2 shows a schematic representation of several loop nests
before and after controlled fusion. Each loop is represented as an arc indicating its scope. On the left half of the
figure, the line style of each arc represents the fusion group id for a loop. The fusion control tuple for the inner
loop surrounding statement s1 consists of a vector of line styles [solid, dashed, solid]. On the right, we see that
corresponding loops with equivalent fusion control tuples have been fused.

4

3.2 Statement motion

In scientific applications, loops can be arbitrarily nested and statements may exist inside or outside loops.
Unrelated statements between two fusible loops are an impediment to simple fusion. Intervening statements can
always be embedded in the fused loop as long as they don’t lead to fusion-preventing dependences; however,
this approach can be inefficient, especially if conditionals need to be added around the embedded statement.
To avoid wanton embedding when scalar assignments separate two loops, we implemented a statement motion
transformation. To perform this transformation, we first examine control and data flow constraints that affect
the statement. Subject to these constraints, we hoist the statement out of as many loop levels as possible and
move it to its earliest possible position in the code. 1

[s1] c1 = 1.0 [s1] c1 = 1.0

do j = 4, 99 [s3] c3 = c1+2.0

do i = 2, 97 [s4] c4 = 4.0

q(i,j) = p(i+2,j-2) do j = 4, 99

[s2] c2 = j [s2] c2 = j

do i = 2, 97 do i = 2, 97

r(i,j) = c2*q(i,j) q(i,j) = p(i+2,j-2)

[s3] c3 = c1+2.0 do i = 2, 97

do j = 2, 99 r(i,j) = c2*q(i,j)

[s4] c4 = 4.0 do j = 2, 99

do i = 2, 99 do i = 2, 99

p(i,j) = c3*r(i,j)+c4 p(i,j) = c3*r(i,j)+c4

(a) Before statement motion (b) After statement motion

Figure 3: An example of statement motion.

Figure 3 shows an example of statement motion. 2 It shows how statements s1, s2, s3, and s4 are moved by
our implementation. Note that s4 is hoisted out of a loop. After statement motion, our tool can align and fuse
both the i and j loops.

3.3 Necessary and sufficient alignment

Loop alignment has been previously used to enable fusion by shifting statements in different loops relative to a
common iteration space [1]. In this section, we describe a necessary and sufficient alignment strategy that we
implemented in our tool to enable multi-level fusion and reduce storage as well. The algorithm first traverses the
loop nests in forward program order to compute a sufficient distance that must be maintained between pairs of
dependent variables to preserve the program semantics. It then traverses the loops in backward program order
to compute the necessary distance that needs to be maintained between dependent variables without violating
the existing dependences.

Figure 4 shows the applications of alignment with sufficient distance only and with necessary and sufficient
distance. In Figure 4(a), there are three neighboring loops L1, L2, and L3. Circles represent iterations and arrows
represent dependences between the loops. Because of the dependences from L1 and L2 to L3, L3 cannot be fused
with L1 and L2. However, by applying an alignment with a sufficient distance to L3, we can fuse all three loops.

After fusion, the dependence distance between L1 and L3, and L2 and L3 are 1 and 0 as shown in Figure 4(b).
Assume dependence from L1 to L3 is carried on array a and dependence from L2 to L3 is carried on array b.
Both a and b are temporary arrays and the dependences are the only ones carried on them. In that case the size
of a and b can be reduced to two and one element respectively. This is indicated by the width of the grey dashed
boxes in Figure 4(b). On the other hand, if we apply an alignment with a necessary and sufficient distance,
that it, we shift L1 one iteration right as well, the result after the alignment is shown in Figure 4(c). Since the
distances of both dependences are 0 now, one element for each of a and b will suffice. Although the effect of
the necessary and sufficient alignment on storage reduction is not significant in this case (from three elements to

1While there are certainly more thoughtful techniques for moving statements, such as considering fuse directives before selecting
final placement, we have found this approach sufficient to date. We plan to extend our implementation to move other kinds of
statements besides scalar assignments.

2For brevity, we omit enddos and endifs in the code examples shown. Instead, we use indentation to show the code structure.

5

(a) Before alignment (b) Alignment with sufficient distance (c) Alignment with necessary

and sufficient distance

Figure 4: Necessary and sufficient alignment.

two), the purpose of this example is to show the main idea. When the temporary arrays are high dimensional
or the storage reduction is applied in conjunction with transformations such as blocking and unroll-and-jam, the
reduction could be substantial.

Necessary and sufficient alignment is also beneficial for guard-free core generation by enlarging the core and
reducing the number of clippied tiles.

3.4 Blocking

Blocking (also known as tiling) is widely recognized in the literature as an effective technique for improving cache
utilization for temporal reuse. Our tool enables a developer to mark any loop with a block directive to specify an
integer blocking factor for that loop. For blocking to be legal, it must be legal to interchange each blocked loop
with one or more enclosing loop in the nest. The alignment transformation performed for fusion guarantees that
this precondition for blocking is satisfied. Although blocking is an effective transformation on its own, having it
integrated with other transformations adds to the overall effectiveness of our tool. In particular, there is strong
interplay between blocking and storage reduction.

Consider the case, where we have a three-dimensional array, and a true dependence of distance d involving the
array carried on the outermost k loop of a three dimensional loop nest; the two inner loops iterate over dimensions
i and j. Using the storage reduction strategy described in Section 3.7, a full size temporary is not needed for
this computation because only a slab of thickness d contains live values along the k dimension. However, if we
block the i and j loop nests using blocking factor bi and bj , the storage can be reduced to a volume of bi × bj ×d.
In our framework, all blocking information is communicated to the storage reduction algorithm. This enables us
to reduce storage in multiple dimensions of a temporary array whenever the opportunity arises.

3.5 Guard free core generation

As mentioned previously, the presence of conditionals within a fused loop nest can degrade performance on a
pipelined architecture. We developed a novel loop splitting algorithm that partitions the iteration space in a
way that enables us to have a core loop nest free of conditionals. Our algorithm is designed for optimizing a
loop nest created by fusing a series of stride-one rectangular iteration spaces that are offset with respect to one
another.

We begin our loop splitting process by first computing a common intersection region (the core) of all the
overlapping iteration spaces of the fused loop nest. By performing a series of projections and intersections, we
whittle this overlapping iteration space into a hyper-rectangular core. Next, we clip the core so that the range
of each dimension is a multiple of any unroll factor that will be applied along that dimension as part of a later
unroll-and-jam transformation. This clipping transformation is applied to simplify the subsequent application
of unroll-and-jam to the loop nest. Finally, we use half space projections aligned with surfaces of the hyper-
rectangular core to clip off prolog and epilog iteration spaces around the core along the dimensions specified by
the clip directive. We apply this clipping transformation to each statement in the fused loop nest. The union
of all the resulting iteration spaces gives us the clipped region for a particular dimension. For each dimension,
we end up with two such clipped regions depending on the type of halfspace - top or bottom - we consider. The

6

Figure 5: Guard-free core computation.

guard-free region for the dimension is obtained by taking the intersection of the top and the bottom halfspace.
Figure 5 illustrates this transformation. The figure on the left shows the overlapping iteration spaces whereas
the figure on the right shows the guard-free core in which all iteration spaces overlap, surrounded by clipped
wings.

3.6 Unroll-and-jam

Unroll-and-jam is a well-known transformation that has been shown to improve pipeline performance [5], register
usage and cache behavior [6]. The transformation involves unrolling an outer loop a specified number of times
and then jamming the resulting copies into the innermost loop. This transformation brings the iterations of the
outer loop closer together to exploit temporal reuse carried by the outer loop. Moreover, by duplicating the loop
body, unroll-and-jam exposes more instruction level parallelism (ILP).

Studies have shown that unroll-and-jam is not always beneficial. Register spills can occur if the register
pressure of the unrolled loop body is greater than the available number of registers [6]. In some cases the
unrolled loop body could become large enough to thrash a small I-cache. For large loop bodies, we observed
that unroll-and-jam may not increase register reuse or ILP because the jammed instances are too far apart in
the unrolled loop body and the back end compiler can’t determine that they can be interleaved safely.

These issues with unroll-and-jam become especially significant in our integrated framework. Application of
statement motion and multi-level loop fusion can create loop nests with a large inner-loop body. Moreover,
fusing multiple loops is likely to cause disjoint reuse patterns to appear in the fused loop nest. These factors can
have a negative impact on the effectiveness of the unroll-and-jam transformation.

Our implementation of unroll-and-jam incorporates two refinements that address the problems we outlined
above. The first strategy, selective unroll-and-jam enables finer control over which statements within a fused
loop should be unrolled. This strategy reduces the size of the unrolled loop body. Also, this eliminates needless
jammed instances of statements within an unrolled loop and prevents dilation of reuse distance for reuses carried
by the inner loops. This can potentially improve cache behavior. The second strategy, statement interleaving is
targeted to get more ILP and better register usage when we have a large unrolled loop body. The two strategies
are described below in some detail.

3.6.1 Selective unroll-and-jam

Our framework gives the user control over which loops and which statements within fused loops should have
unroll-and-jam applied. Through the use of directives the user can select individual statements within a fused loop
and specify the unroll-and-jam amount for that particular statement. This high level of control can significantly
improve the effectiveness of the unroll-and-jam transformation by reducing the number of capacity and conflict
misses.

7

do j = 2, 1001, 2

do jj = j, j + 1

do j = 2, 1001 do i = 2, 1001

do i = 2, 1001 if (jj .eq. j) then

do k = 1, 1000 do k = 1, 1000

[s1] ab(k,i,j) = a(k,i,j-1)+a(k,i,j-2) [s1] ab(k,i,j) = a(k,i,j-1)+a(k,i,j-2)

do k = 1, 1000 ab(k,i,j+1) = a(k,i,j)+a(k,i,j-1)

[s2] al(k,i,j) = b(k,i-1,j)+b(k,i-2,j) do k = 1, 1000

[s2] al(k,i,jj) = b(k,i-1,jj)+b(k,i-2,jj)

(a) Before selective unroll-and-jam (b) After selective unroll-and-jam

Figure 6: Example of selective unroll-and-jam.

Consider the code fragment in Figure 6(a). Suppose, we decide to unroll-and-jam the outermost loop to
exploit the reuse carried by j. If we unroll-and-jam both s1 and s2 in j we will end up with four statements in
the body of loop i. We notice, however that the reuse in j only applies to s1. The reuse in s2 is carried by i. So,
having a jammed instance of s2 is not helpful. In fact, having s2 jammed unnecessarily dilates the reuse distance
carried by i increasing the likelihood of capacity misses. Moreover, since s1 and s2 refer to two different arrays
- a and b - this situation can potentially increase conflict misses. Both of these factors can degrade performance.

We can circumvent this problem by unroll-and-jammming selectively. As Figure 6(b) illustrates, this can be
achieved by wrapping the loop body of the unrolled loop inside a new loop jj that iterates the number of times
the outer loop has been unrolled. Here, we use a conditional to embed the jammed instances of s1 into the first
iteration of loop jj. This has the effect of unroll-and-jamming s1 in j while leaving s2 unchanged. This yields
the desired register reuse from s1. At the same time, it avoids unnecessarily perturbing the cache reuse carried
by i for s2.

3.6.2 Statement interleaving

When jamming an unrolled loop body into the innermost loop, we interleave the statements of the two loop
bodies whenever it is legal to do so. Keeping the jammed instance of a statement close to the original instance
facilitates close temporal reuse by reducing the register lifetime of values and also boosts ILP since the statement
instances from the separate loop iterations are generally independent.

3.7 Storage reduction

As described in Section 1, calculations in complex scientific applications are often factored into a series of steps
with partial results carried from loop to loop by short-lived temporary arrays. However, using large temporary
arrays can hurt program performance on modern microprocessor-based systems. Automatically restructuring a
code to reduce the size of temporary arrays used can significantly improve performance by reducing the code’s
need for memory bandwidth, improving cache utilization, and reducing the data footprint in TLB. In this
section, we describe our tool’s strategy for performing this optimization as part of an integrated suite of program
transformations.

For storage reduction to be possible, the entire live range of an array temporary (a local variable in a procedure)
must be inside the scope of a single (perfect or imperfect) loop nest. Loop fusion can dramatically increase the
opportunities for applying this optimization. After fusion, the extent of a temporary array along a dimension
indexed by a fused loop can often be reduced. The minimum extent of each dimension of a temporary array
depends principally on the distances of associated data dependences and the nesting level of loops carrying these
dependences. A dimension can be eliminated when its extent can be reduced to one.

When storage reduction is to be applied in concert with loop transformations, support for all transformations
must be carefully integrated to achieve the desired effect. Our program transformation tool enables detailed
specification of the desired shape of loop nests through directives that specify fusion groups, blocking factors,
unroll-and-jam factors and whether iteration space splitting should be applied. Each of these transformations
interacts in a significant way with automatic storage reduction. The offsets chosen when aligning loops for fusion

8

thirddtbydx = dt/(3.*dx); halfdtbydx = 1.5*thirddtbydx

thirddtbydz = dt/(3.*dz); thirddtbydy = dt/(3.*dy)

do j = -5, ny+7

do i = max(-j-9,-5), nx+7

if (i .ge. -4) then

do k = -5, nz+6

ab$(k,i-1,iand(j,1)) = (f60*(a(k,i-1,j-1)+a(k,i-1,j))+ &

f61*(a(k,i-1,j-2)+a(k,i-1,j+1))+f62*(a(k,i-1,j-3)+a(k,i-1,j+2)))*...

if (j .ge. -4) then

do k = -5, nz+6

al$(k,iand(i,1)) = (f60*(a(k,i-1,j)+a(k,i,j))+ &

f61*(a(k,i-2,j)+a(k,i+1,j))+f62*(a(k,i-3,j-1)+a(k,i+2,j-1)))*...

if (i .ge. -4 .and. j .ge. -4) then

do k = -5, nz+7

af$(k) = (f60*(a(k-1,i-1,j-1)+a(k,i-1,j-1))+ &

f61*(a(k-2,i-1,j-1)+a(k+1,i-1,j-1))+f62*(a(k-3,i-1,j-1)+a(k+2,i-1,j-1)))*...

......

Figure 7: Multi-level loop fusion and storage reduction.

can affect dependence distances in the fused loop nest and thus the extent to which storage can be reduced. Loop
blocking can reduce the extent needed along a dimension of a temporary array. Unroll-and-jam can diminish
the storage reduction possible along an array’s dimension indexed by a jammed loop index. Finally, reducing
storage along a dimension can make it impossible to split the iteration space of a loop whose index is used along
that dimension.

In our tool, storage reduction uses information from each of the aforementioned loop transformations to infer
the shape of the code that will result and reduces storage as to the greatest extent possible (as dictated by
data dependences and loop nesting order) with the additional constraint that it must be possible to efficiently
index the reduced storage. When the extent of an array dimension carrying one or more data dependences is
reduced, the indexing scheme in that dimension must be wrapped so that indexing repeatedly cycles through the
data of reduced extent. Indexing is most naturally wrapped using a mod operation. However, computing mod
is expensive and the cost of computing it to wrap an array dimension can outweigh the potential performance
benefits of reducing storage. When the extent along a reduced dimension of an array is small, the LCSE team
at University of Minnesota has found that rotating a set of subscripts through a set of scalars can dramatically
reduce instruction count for wrapped indexing. However, this strategy increases integer register pressure and
can cause register spills. Currently, our tool generates code using the Fortran iand intrinsic (a bitwise logical
and) to wrap indexing. The iand operation is cheaper to compute than mod; however, using it requires that the
extent of a reduced dimension be a power of two. This can limit our ability to reduce storage. In practice, we
have found our iand based indexing scheme enables significant storage reductions and yields fast code.

The code in Figure 7 shows a portion of the original twostages and an optimized version after applying
storage reduction to a loop that has been fused at the two outermost levels. Prior to storage reduction, the code
used three full-size, three-dimensional array temporaries temporaries ab, al and af. The code in the Figure 7(b)
shows the storage-reduced version in which ab has been replaced with ab$ which has only two planes in the j
dimension, al has been replaced with al$ which has been reduced to two columns, and af has been replaced with
a one-dimensional array af$. The k dimension was not reduced for any of the arrays in this example because
only the two outer loops are fused.

In the future, we expect to enhance our tool to eliminate all arithmetic overhead for wrapped indexing (when
the extent of a wrapped dimension is small) by unrolling code for the core computation and replacing subscripts
in the reduced dimension with constants. For this approach to work, one must unroll by a multiple of the length
of the reduced dimension, add a loop prolog necessary to establish the pre-conditions for the unrolled code and
an epilog to handle remaining iterations.

9

4 Experimental Results

To show the effectiveness of our program transformation tool, we present experimental results of the Runga-Kutta
advection kernel (twostages) from the NCOMMAS code for mesoscale weather modeling [22], the Livermore
Loop 18 benchmark (LL18), an explicit hydrodynamics kernel, and the swim benchmark from the SPEC 2000
suite. twostages has 116 lines of Fortran code with 8 three-level loop nests using 15 three-dimensional real arrays
including globals and temporaries. LL18 is a 59-line kernel with 4 two-level loop nests using 9 two-dimensional
double precision arrays. We report results on two problem sizes for each program. Problem sizes for twostages
are 64 × 64 × 64 and 128 × 128 × 128, plus a ghost region with extra nine elements at each end of the data
dimensions. Problem sizes for LL18 are 512 × 512 and 1K × 1K. Problem sizes for swim are 256 × 256 and
512× 512.

Performance experiments were conducted on an SGI O2 workstation with a 195 MHz MIPS R10K processor.
The processor has a 32KB 2-way set associative primary cache, a 1MB 2-way unified secondary cache, and a
64-way 512KB TLB. Each version of the transformed code was generated by our tool based on annotated original
source code. All programs were compiled with MIPSpro compiler V7.3.1 using “-O3 -mips4” optimization flags.
We used SGI’s SpeedShop tool to measure CPU cycles, L1, L2, and TLB misses using hardware performance
counters. All measurements were taken on separate runs to avoid multiplexing the performance counters. Each
experiment was repeated multiple times. Variations were small and the average measurements are reported. All
measurements were taken for 2 time steps for each twostages version and 5 time steps for each LL18 version.

We compare the performance of the original code with different versions of transformed code generated by our
tool. A different combination of transformations was used for each separate run of the experiment. Statement
motion, fusion, and loop alignment were applied to all versions of the transformed code since they are enabling
transformations for others in our framework. Loop splitting was used whenever unroll-and-jam was used. The
parameters for fusion, blocking and unroll-and-jam were also varied in turn. For the swim benchmark a naive
scalar replacement(SC) transformation was used.

For each version of the transformed code we present overall speedup as well as the ratio of L1, L2 and TLB
misses relative to a baseline version of the code. For the baseline version, we also present the total number of L1,
L2, and TLB misses. In each table, the leftmost column describes the transformations that were applied. We use
the notation n-lF to denote that an n-level fusion was applied to the source code. BL, SR, UJ are abbreviations
for blocking, storage reduction and unroll-and-jam respectively. So, for example, 2-lF, SR, BL implies that in
the transformed code, the outer two loop levels were all fused, then both storage reduction and blocking were
applied.

In Table 1– 3 we present results obtained using different sets of transformations and compare them to the
baseline version of the code. The results show that we are able to double the performance for both twostages
and LL18 by using the best combination of transformations. For twostages this involved applying all four of
the major transformations in our framework. For LL18 a combination of storage reduction, blocking and fusion
turned out to be the best.

For swim the improvments were less dramatic. A combination of unroll-and-jam, blocking and scalar re-
placement yielded a 24% speedup. It should be noted that even after the improvement swim was performing
at only about 7% of peak FP performance. This suggests that there may be more opportunities for improving
performance that are still available.

The results in Table 1– 3 also reveal the contribution of each transformation in achieving the best performance.
We see that eliminating any one of the transformations from the best combination results in a loss of performance.
That is, each transformation is necessary to obtain the best results.

5 A Rationale for User Guided Tuning

Given the enormous complexity of today’s processor architecture, building exact architectural models have be-
come an intractable task. As such most optimizing compilers use simplified models that have obvious shortcom-
ings. An empirical method can overcome some of these shortcomings by searching for the best transformation
parameters through iterative evaluation of the program. However, the optmization space is large and complex and
searching this space effectively and efficently is a subject of ongoing research by ourselves and others [24, 2, 8, 19].

Until the time compilers are able to automatically generate code that is comparable to state-of-the-art hand
optmized code, a reasonable alternative is to allow the user to manually tune some of the transformation pa-

10

Code 64 × 64 × 64 128 × 128 × 128
L1 misses L2 misses TLB misses Speedup L1 misses L2 misses TLB misses Speedup

2-lF,SR,BL,UJ 0.86 0.40 0.29 1.99 0.86 0.42 0.40 1.91
2-lF,SR,BL 1.00 0.39 0.30 1.90 1.01 0.43 0.41 1.79
2-lF,BL,UJ 1.27 0.58 0.49 1.49 1.15 0.61 0.61 1.47
2-lF,SR,UJ 0.81 0.46 0.21 1.89 0.82 0.74 0.29 1.34
Original 1(3.09M) 1(1.38M) 1(134K) 1 1(23.3M) 1(8.5M) 1(540K) 1

Table 1: Contribution of individual transformations in achieving best performance for twostages.

Code 512 × 512 1K × 1K
L1 misses L2 misses TLB misses Speedup L1 misses L2 misses TLB misses Speedup

2-lF,SR,BL 0.57 0.42 5.95 2.12 0.48 0.42 24.1 1.96
2-lF,SR 1.01 0.38 0.44 1.94 0.96 0.44 0.53 1.82
2-lF,BL 0.93 0.65 18.9 1.34 0.92 0.65 45.12 1.18
Original 1(8.2M) 1(2.1M) 1(25K) 1 1(39M) 1(8.6M) 1(125K) 1

Table 2: Contribution of individual transformations in achieving best performance for LL18.

rameters. Such a transformation tool - as the one described in this paper - will allow application programmers
tune their programs to get the high performance that leading edge commercial compilers are unable to give
them. Moreover, by faithfully executing a complex set of transformations, such a tool can serve as a back-end
for optimizing systems based on empircal methods. This has been the rationale for allowing user guided tuning
in our tool.

To support our argument for user guided tuning we present here a comparison of our tool with the high level
optmizer (HLO) released by Intel for the Itanium architecture HLO. HLO integrates a large set of source-to-
source transformations that exploit the available ILP in programs. It includes most of the major transformations
available in our tool such as fusion, array contraction and blocking. In addition HLO also has other optimizing
transformations such as data prefetching, scalar replacement etc. The chief difference between Intel’s HLO and
our framework is that HLO does not allow the user to tune any of the transformation parameters. Also the
choice of transformations that the user can enable/disable for a particular compilation is very limited.

To compare the two tools we first compiled the twostages kernel with Intel’s fortran compiler using ’-O3’
option. The ’-O3’ option applies the most aggressive transformations and enables all transformations in HLO.
We used the opt report file option to generate the list of high level transformations that were applied. We then
ran the twostages kernel through our tool several times applying a new transformation for each run. After
running the program through our tool we compiled it using the ’-O3’ option again and generated a report of all
optmizations that were applied. We also collected performance metrics for each version of the code.

Table 4 lists the transformations that were applied by our tool and HLO at each step. Table 4 also lists the
memory peformance metrics and the overall speedup for each version of the transformed code.

We see from the table that HLO did not apply fusion, array contraction or blocking to the code, although
all these transformations proved beneficial when applied by our tool. The cumulutaive effect of applying these
transformations was a 31% improvement over what HLO could achieve. There are two possible explanations
for HLO not applying the transformations in question. It may be that the opportunities of applying fusion
array contraction or blocking were not detected because of the particular code shape. It is also possible that
opportunities were detected but the analysis in HLO deemed those transformations to be unprofitable. In either
case, these results support our argument that using directives to guide the optmization process is a necessary
step in getting close to hand coded performance.

11

Code 256 × 256 512 × 512
L1 misses L2 misses TLB misses Speedup L1 misses L2 misses TLB misses Speedup

UJ,SC,BL 0.98 0.96 0.46 1.21 0.93 0.98 1.01 1.24
SC,UJ 0.97 0.93 0.54 1.19 0.93 0.99 1.06 1.21
SC,BL 0.98 0.95 0.52 1.17 0.95 1.02 1.04 1.20
UJ,BL 0.99 0.97 0.69 1.01 0.92 1.03 0.97 1.09
Original 1(5M) 1(2.2M) 1(485K) 1 1(22.1M) 1(8.4M) 1(1.4M) 1

Table 3: Contribution of individual transformations in achieving best performance for swim.

Code Transformations applied by HLO L2 misses L3 misses TLB misses Speedup

Original Prefetch 1(127M) 1(86M) 1(1.08M) 1
2-lF Prefetch, Scalar Replace, Load-pair, Unroll 0.9 1.24 1.09 1.03
2-lF,SR Prefetch, Scalar Replace, Load-pair, Unroll 0.71 0.86 0.67 1.11
2-lF,SR,BL Prefetch, Scalar Replace, Load-pair, Unroll 0.42 0.38 0.94 1.31

Table 4: Comparison of the transformation tool with Intel’s HLO on the twostages kernel.

6 Conclusions and Future Work

We have described a source-to-source transformation tool that employs a tightly-integrated set of analyses and
transformations to tailor programs to better exploit an architecture’s capabilities.

Our tool enables application programmers to write their code in a natural style and annotate it with trans-
formations rather than transform it manually. The experimental results in Section 4 show that the integrated
approach of our tool was the key to achieving high performance. For instance, storage reduction and blocking both
became more effective when applied in concert than when applied in isolation. This is evident from the results
presented for the twostages kernel. Also integration of unroll-and-jam with loop splitting reduces the number
of prologue and epilogue code generated for a loopnest. This increases the effectiveness of the unroll-and-jam
transformation. It is noteworthy that our source-to-source tool is suited for generating tailored code for stencil
calculations [3].

The discussion in Section 5 highlights the benefits of user guided code optmization. Our transformation tool
which exposes tuning parameters for external control can not only give application programmers the desired
performance but also serve as a back-end for emprically-driven optmization systems.

We have a number of planned enhancements to our tool. These include support for scalar replacement (to
improve register allocation of array variables), a more aggressive storage reduction strategy along with a code
generation scheme to minimize the cost of indexing reduced storage (to further reduce memory footprint without
increasing indexing overhead), hierarchical tiling (to improve memory hierarchy utilization), and more precise
control over tile loop nesting (for more precise management of iteration order).

References

[1] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan Kaufmann, 2002.

[2] N. Baradaran, J. Chame, C. Chen, P. Diniz, M. Hall, Y.-J. Lee, B. Yu, and R. Lucas. ECO: an empirical-based
compilation and optimization system. In International Parallel and Distributed Processing Symposium, 2003.

[3] M. Bromley, S. Heller, T. McNerney, and G. Steele, Jr. Fortran at ten gigaflops: The Connection Machine convolution
compiler. In Proceedings of the SIGPLAN ’91 Conference on Programming Language Design and Implementation,
Toronto, Canada, June 1991.

[4] D. Callahan, S. Carr, and K. Kennedy. Improving register allocation for subscripted variables. In Proceedings of the
SIGPLAN ’90 Conference on Programming Language Design and Implementation, White Plains, NY, June 1990.

[5] D. Callahan, J. Cocke, and K. Kennedy. Estimating interlock and improving balance for pipelined machines. Journal
of Parallel and Distributed Computing, 5(4):334–358, Aug. 1988.

12

[6] S. Carr and K. Kennedy. Improving the ratio of memory operations to floating-point operations in loops. ACM
Transactions on Programming Languages and Systems, 16(6):1768–1810, 1994.

[7] S. Carr, K. S. McKinley, and C.-W. Tseng. Compiler optimizations for improving data locality. In Proceedings
of the Sixth International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-VI), San Jose, CA, Oct. 1994.

[8] B. Childers, J. Davidson, and M. L. Soffa. Continuos compilation: A new approach to aggressive and adaptive code
transformation. In International Parallel and Distributed Processing Symposium, 2003.

[9] S. Coleman and K. S. McKinley. Tile size selection using cache organization. In Proceedings of the SIGPLAN ’95
Conference on Programming Language Design and Implementation, La Jolla, CA, June 1995.

[10] C. Ding and K. Kennedy. Improving cache performance in dynamic applications through data and computation
reorganization at run time. In Proceedings of the SIGPLAN ’99 Conference on Programming Language Design and
Implementation, Atlanta, GA, May 1999.

[11] C. Ding and K. Kennedy. Improving effective bandwidth through compiler enhancement of global cache reuse. In
International Parallel and Distributed Processing Symposium, San Francisco, CA, Apr. 2001. (Best Paper Award.).

[12] G. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Collective loop fusion for array contraction. In Proceedings of the
Fifth Workshop on Languages and Compilers for Parallel Computing, New Haven, CT, Aug. 1992.

[13] S. Ghosh, A. Kanhere, R. Kirshnaiyer, D. Kulkarni, W. Li, Chu-Chow, and J. Ng. Integrating high-level optimizations
in a production compiler: Design and implementation experience. In Compiler Construction: 12th Interantional
Conference, Lecture Notes in Computer Science 2622. Springer-Verlag, 2003.

[14] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnacott. The Omega Library Interface Guide.
Technical report, Dept. of Computer Science, Univ. of Maryland, College Park, Apr. 1996.

[15] E. Lewis, C. Lin, and L. Snyder. The implementation and evaluation of fusion and contraction in array languages.
In Proceedings of the SIGPLAN ’98 Conference on Programming Language Design and Implementation, Montreal,
Canada, June 1998.

[16] A. Lim and M. Lam. Blocking and array contraction across arbitrarily nested loops using affine partitioning. In
Proceedings of the Eighth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Snowbird,
Utah, June 2001.

[17] A. Lim and M. Lam. Cache optimizations with affine partitioning. In Proceedings of the Tenth SIAM Conference on
Parallel Processing for Scientific Computing, Portsmouth, Virginia, Mar. 2001.

[18] N. Mitchell, K. Högstedt, L. Carter, and J. Ferrante. Quantifying the multi-level nature of tiling interactions.
International Journal of Parallel Programming, 26(5), 1998.

[19] D. Parello, O. Temam, and J. Verdun. On increasing architecture awareness in program optimizations to bridge the
gap between peak and sustained processor performance – matrix-multiply revisited. In Proceedings of SC’02: High
Performance Networking and Computing, Nov. 2002.

[20] G. Pike and P. N. Hilfinger. Better tiling and array contraction for compiling scientific programs. In Proceedings of
SC’02: High Performance Networking and Computing, Baltimore, MD, Nov. 2002.

[21] Y. Song, R. Xu, C. Wang, and Z. Li. Data locality enhancement by memory reduction. In Proceedings of the 15th
ACM International Conference on Supercomputing, Sorrento, Italy, June 2001.

[22] L. J. Wicker. NSSL collaborative model for atmospheric simulation (NCOMMAS).
http://www.nssl.noaa.gov/~wicker/commas.html.

[23] M. E. Wolf and M. Lam. A data locality optimizing algorithm. In Proceedings of the SIGPLAN ’91 Conference on
Programming Language Design and Implementation, Toronto, Canada, June 1991.

[24] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran, D. Padua, K. Pingali, P. Stodghill, and P. Wu.
A comparison of empirical and model-driven optimization. In Proceedings of the SIGPLAN ’03 Conference on
Programming Language Design and Implementation, San Diego, CA, June 2003.

[25] Y. Zhao and K. Kennedy. Scalarizing fortran 90 array syntax. Technical Report CS-TR01-373, Dept. of Computer
Science, Rice University, Mar. 2001.

13

