
11/15/04

Fault Tolerance in Message Passing
and in Action

Experiments with Fault Tolerant Linear Algebra
Algorithms

Jack Dongarra
Julien Langou
Jeffery Chen

http://lacsi.rice.edu/review/2004/slides/ft-mpi.pdf

Fault Tolerance:
Motivation

• Trends in HPC:
—High end systems with

thousand of processors

• Increased probability of a system
failure
—Most nodes today are robust, 3 year life
—Mean Time to Failure is growing shorter as systems grow and

devices shrink.

• MPI widely accepted in scientific computing
—Process faults not tolerated in MPI model

• Mismatch between hardware and (non fault-tolerant)
programming paradigm of MPI.

Fault Tolerance in the
Computation

• Some next generation systems
are being designed with 100K
processors (IBM Blue Gene L)

• MTTF 105 - 106 hours for
component
— sounds like a lot until you

divide by 105!
— Failures for such a system can be

just a few hours, perhaps minutes
away.

• Application checkpoint / restart
is today’s typical fault tolerance
method.

• Problem with MPI, no recovery
from faults in the standard

• Many cluster based on commodity
parts don’t have error correcting
primary memory

Related work

Manetho
n faults
[EZ92]

Egida

[RAV99]

MPI/FT
Redundance of tasks

[BNC01]

FT-MPI
Modification of MPI routines

User Fault Treatment

[FD00]

MPICH-V
N faults

Distributed logging

MPI-FT
N fault

Centralized server

[LNLE00]

Non AutomaticAutomatic

Pessimistic log

Log basedCheckpoint
based

Causal log
Optimistic log

(sender based)

Framework

AP
I

Communication
Layer

Cocheck
Independent of MPI

[Ste96]

Starfish
Enrichment of MPI

[A F99]
Clip

Semi-transparent checkpoint

[CLP97]

Pruitt 98
2 faults sender based

[PRU98]

Sender based Mess. Log.
1 fault sender based

[JZ87]

Optimistic recovery
In distributed systems
n faults with coherent checkpoint

[SY85]

 A classification of fault tolerant message passing environments considering
 A) level in the software stack where fault tolerance is managed and
 B) fault tolerance techniques.

Causal logging +
Coordinated
checkpoint

LAM/MPI

MPICH-V/CL
LA-MPI

 New community MPI effort OPEN-MPI

C^3
Compiler generated chkpt

[P ingali, SC 04]

FT-MPI http://icl.cs.utk.edu/ft-mpi/

• Define the behavior of MPI in case an error occurs

• FT-MPI based on MPI 1.3 (plus some MPI 2 features)
with a fault tolerant model similar to what was done in
PVM.
—Complete reimplementation, not based on other

implementations

• Gives the application the possibility to recover from a
node-failure

• A regular, non fault-tolerant MPI program will run using
FT-MPI

• What FT-MPI does not do:
—Recover user data (e.g. automatic check-pointing)
—Provide transparent fault-tolerance

FT-MPI Failure Recovery Modes

• ABORT: just do as other MPI
implementations

• BLANK: leave hole

• SHRINK: re-order processes to
make a contiguous communicator

– Some ranks change

• REBUILD: re-spawn lost processes
and add them to
MPI_COMM_WORLD

Fault Tolerance - Diskless Checkpointing
Built into Software

• Checkpointing to disk is slow
— May not have any disks on the system

• Have extra checkpointing processors

• Use RAID like checkpointing to processor

• Maintain a system checkpoint in memory
— All processors may be rolled back if necessary
— Use k extra processors to encode checkpoints so that

if up to k processors fail, their checkpoints may be
restored (Reed-Solomon encoding)

• Idea to build into library routines
— We are looking at iterative solvers
— Not transparent, has to be built into the algorithm

How Raid for a Disk System Works

• Similar to RAID for disks.

• If X = A XOR B then this is true:
X XOR B = A
A XOR X = B

How Diskless Checkpointing Works
 Comp Proc 1 Comp Proc p Check pt Proc

Data

Local
Checkpoint

Data

Local
Checkpoint Checkpoint

Encoding

+Memory Memory Memory

The encoding establishes an equality: C1 + C2 + … Cp = Cp+1
If one of the processor failed, the above equality becomes a linear equation with
only one unknown, therefore, lost data can be solved from the equation

Diskless Checkpointing
• The N application processors

(4 in this case) each maintain
their own checkpoints locally.

• K extra processors maintain
coding information so that if
1 or more processors fail,
they can be replaced.

• Will describe for k=1 (parity)

• If a single processor fails,
then its state may be
restored from the remaining
live processors

P0 P1

P3P2

P4

P4 = P0 ⊗ P1 ⊗ P2 ⊗ P3

Parity
processor

Application
processors

Diskless Checkpointing

P0 P1

P3P2

P4

P0

P3P2

P4

P0

P3P2

P4
P1

P4 takes on the identity of P1
and the computation continues

• When failure occurs:
— control passes to user supplied

handler
— “XOR” performed to recover

missing data
— P4 takes on role of P1
— Execution continue

Application Scenario with FT-MPI

rc=MPI_Init (…)

Install Error
Handler & Set

LongJMP

Call app (…)

If normal startup

MPI_Finalize(…)

rc=MPI_Init (…)

Set
LongJMP

Call app (…)

MPI_Finalize(…)

ErrorHandler
 Do recover ()

Do JMP

On error
(automatic via the MPI runtime library,
 could be done because of a “contract
 violation”)

Application Scenario with FT-MPI

A Fault-Tolerant Parallel CG Solver
• Tightly coupled computation

• Do a “backup” (checkpoint) every j iterations for
changing data
—Requires each process to keep copy of iteration changing

data from checkpoint

• First example can survive the failure of a single process

• Dedicate an additional process for holding data, which
can be used during the recovery operation

• For surviving k process failures (k << p) you need k
additional processes (second example)

CG Data Storage
Think of the data like this
A b 5 vectors

Checkpoint A and b
initially

5 vectors change
every iteration

Parallel Version
Think of the data like this Think of the data like this

on each processorA b 5 vectors
A b 5 vectors

.

.

.

.

.

.

No need to checkpoint
each iteration, say every j
iterations.
Need a copy of the 5 vectors
from checkpt in each processor.

Diskless Version

P0 P1

P3P2

P4

P0

P1

P2

P3 P4

Extra storage needed on each process
from the data that is changing.
Actually don’t do XOR, add the information

FT PCG Algorithm Analysis

Global operation in PCG: three dot product, one preconditioning, and one matrix
vector multiplication.

Global operation in Checkpoint: encoding the local checkpoint.

Global Operations

FT PCG Algorithm Analysis

Global operation in PCG: three dot product, one preconditioning, and one matrix
vector multiplication.

Global operation in Checkpoint: encoding the local checkpoint.
Global operation in checkpoint can be localized by sub-group.

Global Operations

Checkpoint x, r, and p
every k iterations

Test Matrices

bcsstk17

bcsstk17

bcsstk17

Bcsstk17:
 The size is:
 10974 x 10974
 Non-zeros:
 428650
 Sparsity:
 39 non-zeros per row
 on average
 Source:
 Linear equation from
 elevated pressure
 vessel

bcsstk17

PCG Performance on AMD Opteron Cluster

0

2000

4000

6000

8000

10000

12000

15 30 60 120
Number of Computational Processors

T
im

e
 (

S
e
c
o
n
d
s
)

MPICH-1.2.6

MPICH2-0.971

FT-MPI

FT-MPI w/ ckpt

FT-MPI w/recovery

PCG Performance (Single Failure)

0.27%0.11%6634.0(18.2)6614.5 (7.8)6606.97857.410199.8120 proc

0.39%0.24%2256.0 (8.7)2247.5 (5.5)2241.82526.54006.860 proc

0.47%0.36%1061.3 (5.0)1055.1 (3.8)1052.21120.01985.330 proc

0.66%0.53%485.8 (3.2)482.7 (2.6)480.3544.0916.215 proc

Recovery
Ohead (%)

Checkpoint
Ohead (%)

FT-MPI with
recovery

FT-MPI with
checkpoint

FT-MPIMPICH2-
0.971

MPICH-
1.2.6

Time (sec)

Test Matrices:
 Modified block diagonal matrices with each
 processor own a bcsstk17 plus something.
Sparsity:
 43 non-zeros per row on average.
Total Number of Iterations:
 Run PCG for 2000 iterations.
Checkpoint Status:
 For MPICH runs, there is no checkpoint involved.
 For FT-MPI runs with checkpoint or recovery,
 dedicate one additional processor to do checkpoint
 and do checkpoint at every 100 iterations.
Number of Failures:
 For FT-MPI run with recovery, force one process
 to fail at the 1000th iterations
Timing:
 Report the maximum time on all processes. The
 timer is MPI_Wtime() whose resolutions are
 0.003906 seconds for MPICH-1.2.6, 0.000001
 for MPICH2-0.971, and 0.000100 for FT-MPI.
Platform:
 Linux cluster with 64 dual processor 1.4GHz
 AMD Opteron nodes and Gigabit Ethernet.

Protecting for More Than One Failure: Reed-Solomon
(Checkpoint Encoding Matrices)

• In order to be able to recover from any k (≤ number of
checkpoint processes) failures, need a checkpoint encoding.

• With one checkpoint process we had:
— P sets of data and a function A such that
— C=A*P where P=(P1,P2,…Pp)T;

– C: Checkpoint data (C and Pi same size)
– With A = (1, 1, …, 1)
– C = a1P1 + a2P2 + …+ ap Pp
– To recover Pk;
 solve Pk = (C-a1P1-ak-1Pk-1–ak+1Pk+1–apPp)/ak

• With k checkpoints we need a function A such that
C=A*P where P=(P1,P2,…Pp)T;
– C: Checkpoint data C = (C1,C2,…Ck)T (Ci and Pi same size)
– A: Checkpoint-Encoding matrix A is k x p (k << p)

• When h failures occur, recover the data by taking the
h x h submatrix of A, call it A’, corresponding to the failed
processes and solving A’P’ = C’.
— A’ is the h x h submatrix
— C’ is made up of the surviving h checkpoints

FT PCG Checkpoint Overhead

6625.1(16.8)6622.3(15.0)6619.7(12.8)6616.9 (10.6)6614.5 (7.8)6606.9120 procs

3232.2 (14.1)3227.9 (12.6)3225.7 (10.2)3222.9 (8.5)3220.8 (5.5)3216.660 procs

1472.6 (11.9)1471.9 (9.9)1471.9 (7.9)1470.1 (5.8)1466.1 (3.8)1463.230 procs

674.6 (9.8)673.7 (7.9)671.0 (6.0)668.3 (4.4)666.7 (2.6)662.415 procs

5 ckpt4 ckpt3 ckpt2 ckpt1 ckpt0 ckptTime (seconds)

0.0%

0.0%

0.0%

0.0%

0 ckpt

0.25%0.23%0.19%0.16%0.11%120 procs

0.44%0.39%0.32%0.26%0.17%60 procs

0.81%0.67%0.54%0.39%0.26%30 procs

1.45%1.17%0.89%0.64%0.39%15 procs

5 ckpt4 ckpt3 ckpt2 ckpt1 ckptOverhead (%)

Test Matrices:
 Modified block diagonal matrices with each
 processor own a bcsstk17 plus something.
Sparsity:
 43 non-zeros per row on average.
Total Number of Iterations:
 Run FT PCG for 2000 iterations.
Checkpoint Interval:
 Checkpoint at every 100 iterations.
Number of Failures:
 There is no failure in this experiment.
Timing:
 Maximum time on all processes. The timer is
 M PI_Wtime() whose resolution is 0.0001 second.
Platform:
 Linux cluster with 64 dual processor 1.4GHz
 AMD Opteron nodes and Gigabit Ethernet.

FT PCG Checkpoint Overhead

0.00%

0.50%

1.00%

1.50%

2.00%

1 2 3 4 5

Number of Checkpoint Processors

C
h
e
c
k
p
t

O
v
e
rh

e
a
d
(%

) 15 procs
30 procs

60 procs
120 procs

FT PCG Recovery Overhead

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1 2 3 4 5

Number of Failed Processors

R
e
c
o
v
e
ry

 O
v
e
rh

e
a
d
 (

%
)

 15 procs
 30 procs
 60 procs
120 procs

FT PCG Recovery Overhead

6639.7 (21.5)6638.2 (20.9)6636.3 (20.0)6633.5(18.8)6634.0(18.2)6606.9120 procs

3239.1 (11.1)3237.0 (10.4)3235.1 (9.8)3231.1 (9.2)3230.1 (8.7)3216.660 procs

1480.1 (7.0)1477.7 (6.5)1476.4 (6.0)1472.6 (5.5)1469.0 (5.0)1463.230 procs

679.8 (4.8)677.9 (4.5)676.0 (4.0)672.1 (3.7)670.0 (3.2)662.415 procs

5 proc-failures4 proc-failures3 proc-failures2 proc- failures1 proc-failures0 proc-failuresTime (seconds)

0.0%

0.0%

0.0%

0.0%

0 proc-
failures

0.32%0.31%0.30%0.28%0.27%120 procs

0.34%0.32%0.30%0.28%0.27%60 procs

0.47%0.44%0.41%0.37%0.34%30 procs

0.71%0.66%0.59%0.55%0.48%15 procs

5 proc-failures4 proc-
failures

3 proc-failures2 proc-
failures

1 proc-failuresOverhead (%)

Test Matrices:
 Modified block diagonal matrices with each
 processor own a bcsstk17 plus something.
Total Number of Iterations:
 Run FT PCG for 2000 iterations.
Checkpoint Interval:
 Checkpoint at every 100 iterations.
Recovery Frequency:
 One recovery. Force some processes to fail
 at the 300th iteration.
Timing:
 Maximum time on all processes. The timer is
 M PI_Wtime() whose resolution is 0.0001 second.
Platform:
 Linux cluster with 64 dual processor 1.4GHz
 AMD Opteron nodes and Gigabit Ethernet.

FT PCG Performance to Survive a Failure of Five Processors

0

1000

2000

3000

4000

5000

6000

7000

15 30 60 120

Number of Computational Processors

T
im

e
 t

o
 S

o
lu

ti
o
n
 (

se
c
o
n
d
s)

original

with ckpt

with failure

FT PCG Performance

Next Steps
Investigate ideas for 1K to 10K processors, then to BG/L:
• Software to determine the checkpointing interval and number

of checkpoint processors from the machine characteristics.
—Perhaps use historical information

• Local checkpoint and restart algorithm.
—Coordination of local checkpoints.
—Processors hold backups of neighbors.

• Have the checkpoint processes participate in the computation
and do data rearrangement when a failure occurs.
—Use p processors for the computation and have k of them hold

checkpoint.
• Generalize the ideas to provide a library of routines to do the

diskless check pointing.
• Real problems
• Investigate Lossy algorithms

