Fault Tolerance in Message Passing
and in Action

Experiments with Fault Tolerant Linear Algebra
Algorithms

Jack Dongarra

Julien Langou
Jeffery Chen

http://lacsi.rice.edu/review/2004/slides/ft-mpi.pdf

11/15/04 I_ACSI ;=

Fault Tolerance:
Motivation

Trends in HPC:

—High end systems with
thousand of processors

Increased probability of a system
failure

— Most nodes today are robust, 3 year life

—Mean Time to Failure is growing shorter as systems grow and
devices shrink.

MPT widely accepted in scientific computing

—Process faults not tolerated in MPT model

Mismatch between hardware and (non fault-tolerant)
programming paradigm of MPI.

LACSIar

Fault Tolerance in the
Computation S

(64 cabinets, 64x32x32)

Cabinet
1 32 Node boards, 8x8x16
* Some next generation systems (32 Node boards, 8xBx16)

are being designed with 100K e
ode Boar

processors (IBM Blue Gene L) (32 chips, 4xdx2)
16 Compute Cards

.:'
A

TN Y,

* MTTF 105 - 106 hours for :
Compute Card , ke, K |
component (2 chips, 201x1) <R RRRRRRER
ds lik lot until Chip p 180/360 TF/s
— sounds like a lot until you) X
(2 processors) g
ivi 9| 2.9/5.7 TFls
divide by 10°! gt anille w

90/180 GF/s
8 GB DDR 2048 procs

H =
— Failures for such a system can be \@®
5.6/11.2 GF/s 64 procs

just a few hours, perhaps minutes , . cr.

away. 4MB O'i%EoEsDR
2 procs
* Application checkpoint / restart
is today's typical fault tolerance * Many cluster based on commodity
method. parts don't have error correcting

primary memory

* Problem with MPI, no recovery
from faults in the standard

LACSIar

Related work

A classification of fault tolerant message passing environments considering
A) level in the software stack where fault tolerance is managed and
B) fault tolerance techniques.

Automatic Non Automatic

Checkpoint

based Log based

Optimistic log

(sender based) Causal log Pessimistic log

Cocheck

dependent of MP Optimistic recovery Manetho Causal logging +
Framework Ste96] In distributed systems n faults Coordinated
n faults with coherent checkpoint [EZ92] checkpoint
Starfish [SY85]
Enrichment of MPIL
A F9 O
Clip !
gemi—transparentcheckpoi t E ida FT'MPI
AP [CLP97] : 9 Redll;ldl:a,rigtl;-tl;sks Modification of MPI routines
' User Fault Treatment
I , [RAV99] BNCO1 a0
[}
/" Pruitt 98 q\
X2 faults sender based
PRU9S8
MPICH-V

Communication

Laye r N faults

Distributed logging

Centralized server

Ander based Mess. Log.
1 fault sender based

C/~3
Compiler generated chkpt

Pingali, SC04

OPEN MPI

New community MPI effort OPEN-MP| ==

FT-MPI nttp:/iicl.cs.utk.edu/ft-mpil

Define the behavior of MPI in case an error occurs

FT-MPI based on MPI 1.3 (plus some MPTI 2 features)
with a fault tolerant model similar to what was done in
PVM.

— Complete reimplementation, not based on other
implementations

Gives the application the possibility to recover from a
node-failure

A regular, non fault-tolerant MPI program will run using
FT-MPI

What FT-MPI does not do:

—Recover user data (e.g. automatic check-pointing)
—Provide transparent fault-tolerance

LACSIar

FT-MPI Failure Recovery Modes

fﬂ HARNESS FT_MPI Virtual Machine Communicator Infomation

ABORT: just do as other MPI

implementations el B

|
.
BLA N K . Ieave ho I e 7| HARNESS FT_MPI Virtual Machine Communicator Infomation
commut

nicators MPI_COMM_WORLD num procss 2 HPI sizes 2

Rank 1D 0 1

o s -

SHRINK: re-order processes to
make a contiguous communicator

- some ranks Change (©| HARNESS FT_MPI Virtual Machine Communicator Infomation |

nicator; HPI_COMM_WORLD rum procs; 3 MPI size; 3

REBUILD: re-spawn lost processes
and add them to
MPI_COMM_WORLD

Proc id 08001 (nBO02 028003

LACSIar

Fault Tolerance - Diskless Checkpointing
Built into Software

* Checkpointing to disk is slow
— May not have any disks on the system

* Have extra checkpointing processors

Use RAID like checkpointing to processor

* Maintain a system checkpoint in memory
— All processors may be rolled back if necessary

— Use k extra processors to encode checkpoints so that
if up to k processors fail, their checkpoints may be
restored (Reed-Solomon encoding)

Idea to build into library routines
— We are looking at iterative solvers

—__Not transparent, has to be built into the algor‘i‘rhm
LACSIEF

How Raid for a Disk System Works

* Similar to RAID for disks.

RAID 4

Generation

COPYRIGHT @ 1996, 1997, 1998, 1995 ADVANCED COMPUTER & NETWORK CORPORATION

If X = A XOR B then this is true:
XXORB:=A
AXOR X =B

LACSIar

How Diskless Checkpointing Works

Comp Proc 1 Comp Proc p Check pt Proc

The encoding establishes an equality: C; + C, + ... C, = C,
If one of the processor failed, the above equality becomes a linear equation with
only one unknown, therefore, lost data can be solved from the equation

LACSIar

Diskless Checkpointing

* The N application processors
(4 in this case) each maintain

their own checkpoints locally. Application
L processors
* K extra processors maintain Parity
coding information so that if
, processor
1 or more processors fail, Po | P1
they can be replaced. i
* Will describe for k=1 (parity) P> | p3

* If a single processor fails,
then its state may be
restored from the remaining P4=P0®P1®P2®P3
live processors

LACSIar

o (%)
P2 P3
PO

P2 P3

Diskless Checkpointing

P4

P4

When failure occurs:

— control passes to user supplied
handler

— "XOR" performed to recover
missing data

— P4 takes on role of P1
— Execution continue

P4 takes on the identity of P1
and the computation continues

PO

P2

P3

LACSIar

Application Scenario with FT-MPI

rc=MPL_Init (...)
If normal startiy

Install Error
Handler & Set
LongJMP

Call app (...)

= MPI_Finalize(...)

LACSIar

Application Scenario with FT-MPI

rc=MPL_Init (...)

ErrorHandler

Set Do recover ()
LongJMP Do JMP
Call app (...) On error

(automatic via the MPI runtime library,
could be done because of a “contract

. MPI_Finalize(...) MJ—L/A\CSF‘
uy

A Fault-Tolerant Parallel CG Solver

Tightly coupled computation

Do a "backup” (checkpoint) every j iterations for

changing data

—Requires each process to keep copy of iteration changing

data from checkpoint

First example can survive the failure of a single process

Dedicate an additional process for holding data, which

can be used during the recovery operation

For surviving k process failures (k << p) you need k

additional processes (second example)

LACSIar

CG Data Storage

Think of the data like this
A b b vectors

5 vectors change
every iteration

Checkpoint A and b

\/ initially

LACSIar

A

b

Parallel Version

Think of the data like this

b vectors

Think of the data like this
on each processor

A b 5 vectors

No need to checkpoint
each iteration, say every J

Iterations.
Need a copy of the 5 vectors

from checkpt in each proces:

LACSIar

Diskless Version

PO

Pl

P2

P3 P4

PO P1

P4

P2 P3

Extra storage needed on each process
from the data that is changing.
Actually don't do XOR, add the information

FT PCG Algorithm Analysis

Compute P9 = b — Az for some initial guess z(0)
for :=1,2,...
solve Mz(i-1) = p(i=1)
Pi—1 = r(i—l)Tz(i—l)
ifi =1

Bi—1 = pi-1/pi-z
pt) =200 4 g g pli !
endif |
q(z) — Ap(z) o
0 = pizy /p7 g
'r(i) = r(i_l) —_ aiq(i‘

) Global Operations

check convergence; continue if necessary
end

Global operation in PCG: three dot product, one preconditioning, and one matrix
vector multiplication.

Global operation in Checkpoint: encoding the local checkpoint. LACSI ;=

FT PCG Algorithm Analysis

Compute P9 = b — Az for some initial guess z(0)
for :=1,2,...
solve MzU=—1 = p(=1)
Pi_1 = pE=17 ,(i-1)
if ¢ =1
pl) = (0
else
Bi-1 = pi-1/pi-2
p(z) — (i-1) + ﬂi_lp(z—l)
endif |
q(z) = Ap(z) L
o; = Pz’—l/p(z) q(z)
'r(i) o r(i_l) — a,z.q(i‘

» Checkpoint x, r, and p
every K iterations

Global Operations

check convergence; continue if necessary
end

Global operation in PCG: three dot product, one preconditioning, and one matrix
vector multiplication.

Global operation in Checkpoint: encoding the local checkpoint. ~N
Global operation in checkpoint can be localized by sub-group. I—ACSI uy

Bcsstk17:

The size is:
10974 x 10974

Non-zeros:
428650

Sparsity:
39 non-zeros per row
on average

Source:
Linear equation from
elevated pressure
vessel

Test Matrices

besktk17

N
N

bcs:

17

Q.
\\\

bessSik17

LACSIar

PCG Performance (Single Failure)

PCG Performance on AMD Opteron Clu

Test Matrices:
M odified block diagonal matrices with each

12000 processor own a besstk17 plus something,
o MPICH-1.2.6 Sparsity:
) 43 non-zeros per row on average.
10000+~ ®MPICHZ-0.971 Total Number of Iterations:
o0FT-MPI Run PCG for 2000 iterations.
2 8000 Checkpoint Status:
g OFT-MPI w/ ckpt For MPICH runs, there is no checkpoint involved.
9 For FT-MPI runs with checkpoint or recovery,
S 6000 BFT-MPI w/recovery dedicate one additional processor to do checkpoint
~ and do checkpoint at every 100 iterations.
GEJ Number of Failures:
F 4000 For FT-MPI run with recovery, force one process
to fail at the 1000™ iterations
Timing:
2000 Report the maximum time on all processes. The
timer is MPI_Wtime() whose resolutions are
0.003906 seconds for MPICH-1.2.6, 0.000001
0 T m | | - for MPICH2-0.971, and 0.000100 for FT-MPI.
Platform:
15 Numbes;oof ComputationgIOProcesg 120 Linux cluster with 64 dual processor 1.4GHz
AMD Opteron nodes and Gigabit Ethernet.
Time (sec) MPICH- MPICH2- | FT-MPI FT-MPT with FT-MPI with | Checkpoint Recovery
1.2.6 0.971 checkpoint recovery Ohead (%) Ohead (%)
15 proc 916.2 544.0 480.3 482.7 (2.6) 485.8 (3.2) 0.53% 0.66%
30 proc 1985.3 1120.0 1052.2 1055.1 (3.8) 1061.3 (5.0) 0.36% 0.47%
60 proc 4006.8 2526.5 2241.8 2247.5 (5.5) 2256.0 (8.7) 0.24% 0.39%
120 proc 10199.8 7857.4 6606.9 6614.5 (7.8) 6634.0(18.2) | 0.11% 0.27%

Protecting for More Than One Failure: Reed-Solomon
(Checkpoint Encoding Matrices)

In order to be able to recover from any k (< number of
checkpoint processes) failures, need a checkpoint encoding.

With one checkpoint process we had:
— P sets of data and a function A such that
— C=A*P where P=(P,,P,,..P,)":
C: Checkpoint data (C and P, same size)
- WithA=(,1, ., 1)
- C-= 01P1 + 02P2 + .+ ap Pp C-isthedataonthei”“ckpt By
- To recover P,; S S
solve P, = (C-a1P;-ay 1P 1-GeiPrar-a P Ve, BSIP crmnesuen
With k checkpoints we need a function A such thaf ® -
C=A*P where P=(P,,P,,..P)T Compisitosl Erooy ChecpeiEio
- C: Checkpoint data C = (C,,C,...C,)" (C, and P, same size)
- A: Checkpoint-Encoding matrix A is k x p (k << p)

When h failures occur, recover the data by taking the

h x h submatrix of A, call it A’, corresponding to the failed
processes and solving AP’ = C'.

— A' is the h x h submatrix

— C is made up of the surviving h checkpoints

C, is the data on the ckpt proc

@ C,=P,+ ... +P,

Computational Procs Checkpoint Proc

P, is the data on the /# comp procs

FT PCG Checkpoint Overhead

FT PCG Checkpoint Overhea

Test M atrices:

M odified block diagonal matrices with each

2.00% - 15 procs processor own a besstk17 plus something,
¥ 30 procs Sparsity:
5 43 non-zeros per row on average.
S 1.50% - 16(2) Opr?,gis Total Number of Iterations:
% : / Run FT PCG for 2000 iterations.
> 1.00% Checkpoint Interval:
S Checkpoint at every 100 iterations.
e Number of Failures:
9 0.50% There is no failure in this experiment.
o}
S L Timing;:
0.00% ‘ ‘ ‘ M aximum time on all processes. The timer is
. 0 ‘ ‘ ‘ MPI_Wtime() whose resolution is 0.0001 second.
1 2 3 4 5 Platform:
Number of Checkpoint Processc Linux cluster with 64 dual processor 1.4GHz
AMD Opteron nodes and Gigabit Ethernet.
Overhead (%) | O ckpt 1 ckpt 2 ckpt 3 ckpt 4 ckpt 5 ckpt
15 procs 0.0% 0.39% 0.64% 0.89% 1.17% 1.45%
30 procs 0.0% 0.26% 0.39% 0.54% 0.67% 0.81%
60 procs 0.0% 0.17% 0.26% 0.32% 0.39% 0.44%
120 procs 0.0% 0.11% 0.16% 0.19% 0.23% 0.25%
Time (seconds) | O ckpt 1 ckpt 2 ckpt 3 ckpt 4 ckpt 5 ckpt
15 procs 662.4 666.7 (2.6) 668.3 (4.4) 671.0 (6.0) 673.7 (7.9) 674.6 (9.8)
30 procs 1463.2 1466.1 (3.8) 1470.1 (5.8) 14719 (7.9) 14719 (9.9) 1472.6 (11.9)
60 procs 3216.6 3220.8 (5.5) 3222.9 (8.5) 3225.7 (10.2) 3227.9 (12.6) 3232.2 (14.1)
120 procs 6606.9 6614.5 (7.8) 6616.9 (10.6) 6619.7(12.8) 6622.3(15.0) 6625.1(16.8)

FT PCG Recovery Overhead

FT PCG Recovery Overhea

Test Matrices:
M odified block diagonal matrices with each

;\‘; 1.00% processor own a besstk17 plus something.

N —— 15 procs) ¢ .

- 30 procs Total Number of Iterations:

s 0.80% - 60 procs Run FT PCG for 2000 iterations.

(4] .

< 120 proc: / Checkpoint Interval:

o 0.60% Checkpoint at every 100 iterations.

e ’/‘//k Recovery Frequency:

> 0.40% One recovery. Force some processes to fail

3 at the 300" iteration.

9 0.20% Timing: . ‘ . .

) M aximum time on all processes. The timer is

o 0.00% ‘ ‘ ‘ ‘ ‘ MPI_ Wtime() whose resolution is 0.0001 second.
= [[[[|

Platform:
Linux cluster with 64 dual processor 1.4GHz
AMD Opteron nodes and Gigabit Ethernet.

1 2 3 4 5
Number of Failed Process

Overhead (%) | O proc- 1 proc-failures | 2 proc- 3 proc-failures | 4 proc- 5 proc-failures
failures failures failures

15 procs 0.0% 0.48% 0.55% 0.59% 0.66% 0.71%

30 procs 0.0% 0.34% 0.37% 0.41% 0.44% 0.47%

60 procs 0.0% 0.27% 0.28% 0.30% 0.32% 0.34%

120 procs 0.0% 0.27% 0.28% 0.30% 0.31% 0.32%

Time (seconds) | O proc-failures | 1 proc-failures | 2 proc- failures | 3 proc-failures | 4 proc-failures | 5 proc-failures

15 procs 662.4 670.0 (3.2) 672.1(3.7) 676.0 (4.0) 677.9 (4.5) 679.8 (4.8)

30 procs 1463.2 1469.0 (5.0) 1472.6 (5.5) 1476.4 (6.0) 1477.7 (6.5) 1480.1 (7.0)

60 procs 3216.6 3230.1 (8.7) 32311 (9.2) 3235.1 (9.8) 3237.0(104) | 3239.1(11.1)

120 procs 6606.9 6634.0(18.2) 6633.5(18.8) 6636.3 (20.0) 6638.2 (20.9) 6639.7 (21.5)

Time to Solution (seconds)

7000

FT PCG Performance

FT PCG Performance to Survive a Failure of Five Processors

6000 +—
5000 +—

@ original
m with ckpt
0 with failu

re

4000

3000

2000

1000

_ I

30 60

Number of Computational Proces:

120

LACSIar

Next Steps

Investigate ideas for 1K to 10K processors, then to BG/L:

* Software to determine the checkpointing interval and number

of checkpoint processors from the machine characteristics.

—Perhaps use historical information

Local checkpoint and restart algorithm.

— Coordination of local checkpoints.

—Processors hold backups of neighbors.

* Have the checkpoint processes participate in the computation
and do data rearrangement when a failure occurs.

—Use p processors for the computation and have k of them hold
checkpoint.

* Generalize the ideas to provide a library of routines to do the
diskless check pointing.

* Real problems
* Investigate Lossy algorithms

LACSIar

